A226099 Positive integers that yield a prime when their most significant (i.e., leftmost) decimal digit is removed.
12, 13, 15, 17, 22, 23, 25, 27, 32, 33, 35, 37, 42, 43, 45, 47, 52, 53, 55, 57, 62, 63, 65, 67, 72, 73, 75, 77, 82, 83, 85, 87, 92, 93, 95, 97, 102, 103, 105, 107, 111, 113, 117, 119, 123, 129, 131, 137, 141, 143, 147, 153, 159, 161, 167, 171, 173, 179, 183, 189, 197, 202, 203, 205, 207, 211, 213, 217
Offset: 1
Examples
a(1) = 12 because when its most significant (or leftmost) digit (1) is removed, the remaining number 2 is prime, and it is the least such number. 102, 103, 105 and 107 are in the sequence because if the first digit is dropped, what is left is a 1-digit prime with a leading digit '0'.
Links
- Giovanni Resta, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Magma
[k:k in [1..220]| IsPrime( k-Reverse(Intseq(k))[1]*10^(#Intseq(k)-1 ))]; // Marius A. Burtea, Dec 21 2019
-
Mathematica
Select[Range@ 300, PrimeQ@ FromDigits@ Rest@ IntegerDigits@ # &] (* Giovanni Resta, Dec 20 2019 *)
-
PARI
select( is(n)=isprime(n%10^logint(n+!n,10)), [0..222]) \\ M. F. Hasler, Dec 20 2019
Formula
From M. F. Hasler, Dec 21 2019: (Start)
a(n) = a(n-4) + 10 for 4 < n < 41, i.e., 20 < a(n) < 110; a(n) = a(n-25) for 61 < n < 287, i.e., 200 < a(n) < 1100, etc. (End)
Comments