A226122 Expansion of (1+2*x+x^2+x^3+2*x^4+x^5)/(1-2*x^3+x^6).
1, 2, 1, 3, 6, 3, 5, 10, 5, 7, 14, 7, 9, 18, 9, 11, 22, 11, 13, 26, 13, 15, 30, 15, 17, 34, 17, 19, 38, 19, 21, 42, 21, 23, 46, 23, 25, 50, 25, 27, 54, 27, 29, 58, 29, 31, 62, 31, 33, 66, 33, 35, 70, 35, 37, 74, 37, 39, 78, 39
Offset: 0
Examples
Given A130823 = 1,1,1,3,3,3,5,5,5,7,7,7,... and A131534 = 1,2,1,1,2,1,1,2,1,1,2,1,..., then a(0)=1*1=1, a(1)=1*2=2, a(2)=1*1=1, a(3)=3*1=3, a(4)=3*2=6, etc. Given A226023(n) from A226023(-1)=-1, then a(0)=0-(-1)=1, a(1)=2-0=2, a(2)=3-2=1, a(3)=6-3=3, a(4)=12-6=6, etc.
Links
- Index entries for linear recurrences with constant coefficients, signature (0,0,2,0,0,-1).
Programs
-
Mathematica
repeat=20; Table[{1, 2, 1}, {repeat}]*(2*Range[repeat]-1) // Flatten (* or *) Table[Floor[(2*n+1)/3]*Floor[(2*n+5)/3], {n, -1, 59}] // Differences (* Jean-François Alcover, May 29 2013 *)
Formula
a(n) = 3*a(n-3) -3*a(n-6) +a(n-9) = a(n-1) +2*a(n-3) -2*a(n-4) -a(n-6) +a(n-7). [Ralf Stephan]
From Bruno Berselli, May 29 2013: (Start)
G.f.: (1+x)^3*(1-x+x^2)/((1-x)^2*(1+x+x^2)^2).
a(n) = 2*a(n-3)-a(n-6).
a(3n)*a(3n-1)-a(3n-2) = A016754(n-1), n>0. (End)
Comments