cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A226158 a(n) = 2*n*(2^n - 1)*zeta(1-n) where in the case n=0 the limit is understood, zeta(s) the Riemann zeta function.

Original entry on oeis.org

0, -1, -1, 0, 1, 0, -3, 0, 17, 0, -155, 0, 2073, 0, -38227, 0, 929569, 0, -28820619, 0, 1109652905, 0, -51943281731, 0, 2905151042481, 0, -191329672483963, 0, 14655626154768697, 0, -1291885088448017715, 0, 129848163681107301953
Offset: 0

Views

Author

Peter Luschny, Jun 28 2013

Keywords

Comments

Also known as the Genocchi numbers, apart from a(0) and a(1) same as A036968.
Consider the difference table of a(n), which is a variant of Seidel's Genocchi table A014781:
0 -1 -1 0 1 0 -3 0 17
-1 0 1 1 -1 -3 3 17 -17
1 1 0 -2 -2 6 14 -34 -138
0 -1 -2 0 8 8 -48 -104 448
-1 -1 2 8 0 -56 -56 552 1160
0 3 6 -8 -56 0 608 608 -8832
3 3 -14 -48 56 608 0 -9440 -9440
0 -17 -34 104 552 -608 -9440 0 198272
-17 -17 138 448 -1160 -8832 9440 198272 0
a(n) is an autosequence: its inverse binomial transform is the sequence signed (see A181722). The first column (inverse binomial transform) is 0, followed by -A036968. - Paul Curtz, Jul 22 2013
a(n+1) = p(0) where p(x) is the unique degree-n polynomial such that p(k) = a(k) for k = 1, ..., n+1. - Michael Somos, Apr 23 2014

Examples

			G.f. = - x - x^2 + x^4 - 3*x^6 + 17*x^8 - 155*x^10 + 2073*x^12 - 38227*x^14 + ...
		

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 50); [0] cat Coefficients(R!(Laplace( -2*x/(1+Exp(-x)) ))); // G. C. Greubel, Apr 22 2023
  • Maple
    seq(n!*coeff(series(-2*x/(1+exp(-x)), x, 34), x, n), n=0..32);
    # Second program:
    A226158 := proc(n) local f; f := z -> Zeta(1-z)*2*z*(2^z-1);
    if n=0 then limit(f(z), z=0) else f(n) fi end: seq(A226158(n), n=0..32);
  • Mathematica
    a[0]=0; a[1]= -1; a[n_]:= n*EulerE[n-1, 0]; Table[a[n], {n,0,32}] (* Jean-François Alcover, Sep 12 2013 *)
    (* Programs from Michael Somos, Apr 23 2014 *)
    a[n_]:= If[n<1, 0, -n*EulerE[n-1, 1]];
    a[n_]:= If[n<0, 0, 2*(1-2^n)*BernoulliB[n,1]]; (* End *)
    Table[2*n*PolyLog[1-n, -1], {n,0,32}] (* Peter Luschny, Aug 17 2021 *)
  • PARI
    my(x='x+O('x^40)); concat([0], Vec(serlaplace(-2*x/(1+exp(-x))))) \\ G. C. Greubel, Jan 19 2018
    
  • Sage
    def A226158(n): return -2*n*zeta(1-n)*(1-2^n) if n != 0 else 0
    [A226158(n) for n in (0..32)]
    # Alternatively:
    def A226158_list(len):
        e, f, R, C = 4, 1, [0], [1]+[0]*(len-1)
        for n in (2..len-1):
            for k in range(n, 0, -1):
                C[k] = -C[k-1] / (k+1)
            C[0] = -sum(C[k] for k in (1..n))
            R.append((2-e)*f*C[0])
            f *= n; e *= 2
        return R
    print(A226158_list(34)) # Peter Luschny, Feb 22 2016
    

Formula

E.g.f.: -2*x/(1+exp(-x)).
a(2n) = -A000367(n)*A090648(n). - Paul Curtz, Jul 22 2013
E.g.f.: -2*x/(1+exp(-x))= -2 - 2*T(0), where T(k) = 4*k-1 + x/( 2 - x/( 4*k+1 + x/( 2 - x/T(k+1) ))); (continued fraction). - Sergei N. Gladkovskii, Nov 23 2013
G.f.: conjecture: -x/Q(0),where Q(k) = 1 - x*(k+1)/(1 + x*(k+1)/(1 - x*(k+1)/(1 + x*(k+1)/Q(k+1) ))); (continued fraction). - Sergei N. Gladkovskii, Nov 23 2013
a(n) = 2*(1 - 2^n)*Bernoulli(n, 1). - Peter Luschny, Apr 16 2014
a(n) = -n*Euler(n - 1, 1). - Michael Somos, Apr 23 2014
a(n) = 2^n*(Bernoulli(n, 1/2) - Bernoulli(n, 1)). - Peter Luschny, Jul 10 2020
a(n) = 2*n*PolyLog[1 - n, -1] - Peter Luschny, Aug 17 2021