A226178 Exponents n such that 2^n - previous_prime(2^n) = next_prime(2^n) - 2^n.
2, 6, 12, 76, 181, 1099, 1820, 9229
Offset: 1
Examples
2^6 = 64, next prime = 67, previous prime = 61, 67-64 = 64-61 = 3, hence 6 is in the sequence.
Programs
-
Mathematica
Reap[Do[m = 2^n; p = NextPrime[m, -1]; q = NextPrime[m]; If[p + q == 2*m, Print[n]; Sow[n]], {n, 2, 10^4}]][[2, 1]]
-
PARI
isok(n) = my(p=2^n); p-precprime(p-1) == nextprime(p+1) - p; \\ Michel Marcus, Oct 02 2019
-
PARI
for(n=2,1100,my(p2=2^n,pn=nextprime(p2),pp=p2-pn+p2);if(ispseudoprime(pp),if(precprime(p2)==pp,print1(n,", ")))) \\ Hugo Pfoertner, Feb 06 2021
-
Python
from itertools import count, islice from sympy import isprime, nextprime def A226178_gen(): # generator of terms return filter(lambda n:isprime(r:=((k:=1<
A226178_list = list(islice(A226178_gen(),5)) # Chai Wah Wu, Aug 08 2022
Formula
A340707(a(n)) = 0. - Hugo Pfoertner, Feb 06 2021
Extensions
Offset 1 from Michel Marcus, Oct 02 2019
a(8) from Hugo Pfoertner, Feb 05 2021
Comments