A226316 Expansion of g.f. 1/2 + 1/(1+sqrt(1-8*x+8*x^2)).
1, 1, 3, 12, 56, 284, 1516, 8384, 47600, 275808, 1624352, 9694912, 58510912, 356467392, 2189331648, 13540880384, 84265071360, 527232146944, 3314742364672, 20930141861888, 132673039491072, 843959152564224, 5385800362473472, 34470606645280768, 221213787774230528, 1423139139514138624
Offset: 0
Keywords
Examples
From _Gus Wiseman_, Jun 25 2020: (Start) The a(0) = 1 through a(3) = 12 words that are (1,2,3)-avoiding and cover an initial interval: () (1) (1,1) (1,1,1) (1,2) (1,1,2) (2,1) (1,2,1) (1,2,2) (1,3,2) (2,1,1) (2,1,2) (2,1,3) (2,2,1) (2,3,1) (3,1,2) (3,2,1) (End)
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..100
- Daniel Birmajer, Juan B. Gil, David S. Kenepp, and Michael D. Weiner, Restricted generating trees for weak orderings, arXiv:2108.04302 [math.CO], 2021.
- W. Y. C. Chen, A. Y. L. Dai and R. D. P. Zhou, Ordered Partitions Avoiding a Permutation of Length 3, arXiv preprint arXiv:1304.3187 [math.CO], 2013.
- Anders Claesson, Giulio Cerbai, Dana C. Ernst, and Hannah Golab, Pattern-avoiding Cayley permutations via combinatorial species, arXiv:2407.19583 [math.CO], 2024.
- Robert A. Proctor and Matthew J. Willis, Parabolic Catalan numbers count flagged Schur functions and their appearances as type A Demazure characters (key polynomials), arXiv preprint arXiv:1706.04649 [math.CO], 2017.
- Wikipedia, Permutation pattern
- Gus Wiseman, Sequences counting and ranking compositions by the patterns they match or avoid.
Crossrefs
Cf. A220097.
Sequences covering an initial interval are counted by A000670.
(1,2,3)-matching permutations are counted by A056986.
(1,2,3)-avoiding permutations are counted by A000108.
(1,2,3)-matching compositions are counted by A335514.
(1,2,3)-avoiding compositions are counted by A102726.
(1,2,3)-matching patterns are counted by A335515.
(1,2,3)-avoiding patterns are counted by A226316 (this sequence).
(1,2,3)-matching permutations of prime indices are counted by A335520.
(1,2,3)-avoiding permutations of prime indices are counted by A335521.
(1,2,3)-matching compositions are ranked by A335479.
Programs
-
Maple
a:= proc(n) option remember; `if`(n<4, [1$2, 3, 12][n+1], ((9*n-3)*a(n-1) -(16*n-20)*a(n-2) +(8*n-16)*a(n-3))/(n+1)) end: seq(a(n), n=0..30); # Alois P. Heinz, Jun 18 2013
-
Mathematica
CoefficientList[Series[1/2 + 1 / (1 + Sqrt[1 - 8 x + 8 x^2]), {x, 0, 30}], x] (* Vincenzo Librandi, Jun 18 2013 *) allnorm[n_]:=If[n<=0,{{}},Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1]]; Table[Length[Select[Join@@Permutations/@allnorm[n],!MatchQ[#,{_,x_,_,y_,_,z_,_}/;x
Gus Wiseman, Jun 25 2020 *)
Formula
a(n) ~ sqrt((sqrt(2)-1)/Pi)*2^(n-1/2)*(2+sqrt(2))^n/n^(3/2). - Vaclav Kotesovec, Jun 29 2013
Conjecture: (n+1)*a(n) +3*(-3*n+1)*a(n-1) +4*(4*n-5)*a(n-2) +8*(-n+2)*a(n-3)=0. - R. J. Mathar, Apr 02 2015
Comments