A102726 Number of compositions of the integer n into positive parts that avoid a fixed pattern of three letters.
1, 1, 2, 4, 8, 16, 31, 60, 114, 214, 398, 732, 1334, 2410, 4321, 7688, 13590, 23869, 41686, 72405, 125144, 215286, 368778, 629156, 1069396, 1811336, 3058130, 5147484, 8639976, 14463901, 24154348, 40244877, 66911558, 111026746, 183886685, 304034456, 501877227
Offset: 0
Examples
a(6) = 31 because there are 32 compositions of 6 into positive parts and only one of these, namely 6 = 1+2+3, contains the pattern (123), the other 31 compositions of 6 avoid that pattern.
Links
- Alois P. Heinz and Vaclav Kotesovec, Table of n, a(n) for n = 0..900 (first 400 terms from Alois P. Heinz)
- M. Elder and V. Vatter, Problems and conjectures presented at the third international conference on permutation petterns
- Carla D. Savage and Herbert S. Wilf, Pattern avoidance in compositions and multiset permutations, Advances in Applied Mathematics 36 (2006), pp.194-201.
- Wikipedia, Permutation pattern
- Gus Wiseman, Sequences counting and ranking compositions by the patterns they match or avoid.
Crossrefs
The version for patterns is A226316.
These compositions are ranked by the complement of A335479.
The matching version is A335514.
The version for prime indices is A335521.
Compositions are counted by A011782.
Patterns matched by compositions are counted by A335456.
Minimal patterns avoided by a given composition are counted by A335465.
Programs
-
Maple
b:= proc(n, m, t) option remember; `if`(n=0, 1, add(b(n-i, min(m, i, n-i), min(t, n-i, `if`(i>m, i, t))), i=1..min(n, t))) end: a:= n-> b(n$3): seq(a(n), n=0..50); # Alois P. Heinz, Mar 18 2014
-
Mathematica
b[n_, m_, t_] := b[n, m, t] = If[n == 0, 1, Sum[b[n - i, Min[m, i, n - i], Min[t, n - i, If[i > m, i, t]]], {i, 1, Min[n, t]}]]; a[n_] := b[n, n, n]; Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Nov 10 2017, after Alois P. Heinz *) mstype[q_]:=q/.Table[Union[q][[i]]->i,{i,Length[Union[q]]}]; Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],!MemberQ[Union[mstype/@Subsets[#]],{1,2,3}]&]],{n,0,10}] (* Gus Wiseman, Jun 22 2020 *)
-
PARI
seq(n)={Vec(sum(i=1, n, prod(j=1, n, if(i==j, 1, (1-x^i)/((1-x^(j-i))*(1-x^i-x^j))) + O(x*x^n))/(1-x^i)))} \\ Andrew Howroyd, Dec 31 2020
Formula
G.f.: Sum_{i>=1} (1/(1-x^i))*Product_{j>=1, j<>i} (1-x^i)/((1-x^(j-i))*(1-x^i-x^j)).
Asymptotics (Savage and Wilf, 2005): a(n) ~ c * ((1+sqrt(5))/2)^n, where c = r/(r-1)/(r-s) * (r * Product_{j>=3} (1-1/r)/(1-r^(1-j))/(1-1/r-r^(-j)) - Product_{j>=3} (1-1/r^2)/(1-r^(2-j))/(1-1/r^2-r^(-j)) ) = 18.9399867283479198666671671745270505487677312850521421513193261105... and r = (1+sqrt(5))/2, s = (1-sqrt(5))/2. - Vaclav Kotesovec, May 02 2014
Extensions
More terms from Ralf Stephan, May 27 2005
Comments