A226405 Expansion of x/((1-x-x^3)*(1-x)^3).
0, 1, 4, 10, 21, 40, 71, 120, 196, 312, 487, 749, 1139, 1717, 2571, 3830, 5683, 8407, 12408, 18281, 26898, 39537, 58071, 85245, 125082, 183478, 269074, 394534, 578418, 847927, 1242926, 1821840, 2670295, 3913782, 5736217, 8407142, 12321590, 18058510, 26466393
Offset: 0
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (4,-6,5,-4,3,-1).
Crossrefs
Programs
-
Magma
A226405:= func< n | n eq 0 select 0 else (&+[Binomial(n-2*j+2, j+3): j in [0..Floor((n+2)/3)]]) >; [A226405(n): n in [0..40]]; // G. C. Greubel, Jul 27 2022
-
Maple
a:= n-> (Matrix(6, (i, j)-> if i=j-1 then 1 elif j=1 then [4, -6, 5, -4, 3, -1][i] else 0 fi)^n)[1, 2]: seq(a(n), n=0..40);
-
Mathematica
LinearRecurrence[{4,-6,5,-4,3,-1}, {0,1,4,10,21,40}, 40] (* Bruno Berselli, Jun 07 2013 *) CoefficientList[Series[x/((1-x-x^3)*(1-x)^3), {x, 0, 50}], x] (* G. C. Greubel, Apr 28 2017 *)
-
PARI
my(x='x+O('x^50)); Vec(x/((1-x-x^3)*(1-x)^3)) \\ G. C. Greubel, Apr 28 2017
-
SageMath
def A226405(n): return sum(binomial(n-2*j+2, j+3) for j in (0..((n+2)//3))) [A226405(n) for n in (0..40)] # G. C. Greubel, Jul 27 2022
Formula
G.f.: x/((1-x-x^3)*(1-x)^3).
From G. C. Greubel, Jul 27 2022: (Start)
a(n) = Sum_{j=0..floor((n+2)/3)} binomial(n-2*j+2, j+3).
a(n) = A099567(n+2, 3). (End)
Comments