A226447 Expansion of (1-x+x^3)/(1-x^2+2*x^3-x^4).
1, -1, 1, -2, 4, -5, 9, -15, 23, -38, 62, -99, 161, -261, 421, -682, 1104, -1785, 2889, -4675, 7563, -12238, 19802, -32039, 51841, -83881, 135721, -219602, 355324, -574925, 930249, -1505175, 2435423, -3940598, 6376022, -10316619, 16692641, -27009261, 43701901, -70711162, 114413064, -185124225
Offset: 0
Links
- Index entries for linear recurrences with constant coefficients, signature (0,1,-2,1).
Programs
-
Magma
m:=50; R
:=PowerSeriesRing(Integers(), m); Coefficients(R!((1-x+x^3)/(1-x^2+2*x^3-x^4))); // Bruno Berselli, Jul 04 2013 -
Mathematica
a[0] = 1; a[1] = -1; a[n_] := a[n] = a[n-2] - a[n-1] - {-1, 0, 1, 1, 0, -1}[[Mod[n+1, 6] + 1]]; Table[a[n], {n, 0, 41}] (* Jean-François Alcover, Jul 04 2013 *)
Formula
a(0)=1, a(1)=-1; for n>1, a(n) = a(n-2) - a(n-1) + A010892(n+2).
a(n) = a(n-2) -2*a(n-3) +a(n-4).
a(n) = A226956(-n).
a(n+6) - a(n) = 2*(-1)^n* A000032(n+3).
a(2n+1) = -A226956(2n+1).
G.f. ( -1+x-x^3 ) / ( (x^2-x-1)*(1-x+x^2) ). - R. J. Mathar, Jun 29 2013
Comments