cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A226450 a(n) = n*(3*n^2 - 5*n + 3).

Original entry on oeis.org

0, 1, 10, 45, 124, 265, 486, 805, 1240, 1809, 2530, 3421, 4500, 5785, 7294, 9045, 11056, 13345, 15930, 18829, 22060, 25641, 29590, 33925, 38664, 43825, 49426, 55485, 62020, 69049, 76590, 84661, 93280, 102465, 112234, 122605, 133596, 145225, 157510, 170469
Offset: 0

Views

Author

Bruno Berselli, Jun 07 2013

Keywords

Comments

See the comment in A226449.
For n >= 3, also the detour index of the n-barbell graph. - Eric W. Weisstein, Dec 20 2017

Crossrefs

Cf. A000567.
Similar sequences of the type b(m)+m*b(m-1), where b is a polygonal number: A006003, A069778, A143690, A204674, A212133, A226449, A226451.

Programs

  • Magma
    [n*(3*n^2-5*n+3): n in [0..40]];
    
  • Magma
    I:=[0,1,10,45]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..45]]; // Vincenzo Librandi, Aug 18 2013
    
  • Mathematica
    Table[n (3 n^2 - 5 n + 3), {n, 0, 40}]
    CoefficientList[Series[x (1 + 6 x + 11 x^2)/(1 - x)^4, {x, 0, 40}], x] (* Vincenzo Librandi, Aug 18 2013 *)
    LinearRecurrence[{4, -6, 4, -1}, {1, 10, 45, 124}, {0, 20}] (* Eric W. Weisstein, Dec 20 2017 *)
  • PARI
    a(n) = n*(3*n^2 - 5*n + 3); \\ Altug Alkan, Dec 20 2017

Formula

G.f.: x*(1+6*x+11*x^2)/(1-x)^4.
a(n) = A000567(n) + n*A000567(n-1).