A226450 a(n) = n*(3*n^2 - 5*n + 3).
0, 1, 10, 45, 124, 265, 486, 805, 1240, 1809, 2530, 3421, 4500, 5785, 7294, 9045, 11056, 13345, 15930, 18829, 22060, 25641, 29590, 33925, 38664, 43825, 49426, 55485, 62020, 69049, 76590, 84661, 93280, 102465, 112234, 122605, 133596, 145225, 157510, 170469
Offset: 0
Links
- Bruno Berselli, Table of n, a(n) for n = 0..1000
- Eric Weisstein's World of Mathematics, Barbell Graph
- Eric Weisstein's World of Mathematics, Detour Index
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
Crossrefs
Programs
-
Magma
[n*(3*n^2-5*n+3): n in [0..40]];
-
Magma
I:=[0,1,10,45]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..45]]; // Vincenzo Librandi, Aug 18 2013
-
Mathematica
Table[n (3 n^2 - 5 n + 3), {n, 0, 40}] CoefficientList[Series[x (1 + 6 x + 11 x^2)/(1 - x)^4, {x, 0, 40}], x] (* Vincenzo Librandi, Aug 18 2013 *) LinearRecurrence[{4, -6, 4, -1}, {1, 10, 45, 124}, {0, 20}] (* Eric W. Weisstein, Dec 20 2017 *)
-
PARI
a(n) = n*(3*n^2 - 5*n + 3); \\ Altug Alkan, Dec 20 2017
Comments