A226451 a(n) = n*(7*n^2-12*n+7)/2.
0, 1, 11, 51, 142, 305, 561, 931, 1436, 2097, 2935, 3971, 5226, 6721, 8477, 10515, 12856, 15521, 18531, 21907, 25670, 29841, 34441, 39491, 45012, 51025, 57551, 64611, 72226, 80417, 89205, 98611, 108656, 119361, 130747, 142835, 155646, 169201, 183521
Offset: 0
Links
- Bruno Berselli, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
Crossrefs
Programs
-
Magma
[n*(7*n^2-12*n+7)/2: n in [0..40]];
-
Magma
I:=[0,1,11,51]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..40]]; // Vincenzo Librandi, Aug 18 2013
-
Mathematica
Table[n (7 n^2 - 12 n + 7)/2, {n, 0, 40}] CoefficientList[Series[x (1 + 7 x + 13 x^2)/(1 - x)^4, {x, 0, 40}], x] (* Vincenzo Librandi, Aug 18 2013 *)
Formula
G.f.: x*(1+7*x+13*x^2)/(1-x)^4.
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) for n >= 4. - Wesley Ivan Hurt, Oct 15 2023
Comments