A226489 a(n) = n*(15*n-11)/2.
0, 2, 19, 51, 98, 160, 237, 329, 436, 558, 695, 847, 1014, 1196, 1393, 1605, 1832, 2074, 2331, 2603, 2890, 3192, 3509, 3841, 4188, 4550, 4927, 5319, 5726, 6148, 6585, 7037, 7504, 7986, 8483, 8995, 9522, 10064, 10621, 11193, 11780, 12382, 12999, 13631, 14278, 14940
Offset: 0
Links
- Bruno Berselli, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Crossrefs
Programs
-
Magma
[n*(15*n-11)/2: n in [0..50]];
-
Magma
I:=[0,2,19]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+Self(n-3): n in [1..45]]; // Vincenzo Librandi, Aug 18 2013
-
Mathematica
Table[n (15 n - 11)/2, {n, 0, 50}] CoefficientList[Series[x (2 + 13 x) / (1 - x)^3, {x, 0, 45}], x] (* Vincenzo Librandi, Aug 18 2013 *)
-
PARI
a(n)=n*(15*n-11)/2 \\ Charles R Greathouse IV, Oct 07 2015
Formula
G.f.: x*(2+13*x)/(1-x)^3.
a(n) + a(-n) = A064761(n).
From Elmo R. Oliveira, Jan 12 2025: (Start)
E.g.f.: exp(x)*x*(4 + 15*x)/2.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2. (End)
Comments