A226514 Column 3 of array in A226513.
13, 44, 99, 184, 305, 468, 679, 944, 1269, 1660, 2123, 2664, 3289, 4004, 4815, 5728, 6749, 7884, 9139, 10520, 12033, 13684, 15479, 17424, 19525, 21788, 24219, 26824, 29609, 32580, 35743, 39104, 42669, 46444, 50435, 54648, 59089, 63764, 68679, 73840, 79253, 84924, 90859, 97064, 103545, 110308, 117359, 124704
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Connor Ahlbach, Jeremy Usatine and Nicholas Pippenger, Barred Preferential Arrangements, Electron. J. Combin., Volume 20, Issue 2 (2013), #P55.
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
Programs
-
Magma
[n^3+9*n^2+21*n+13: n in [0..50]]; // Vincenzo Librandi, Jun 17 2013
-
Magma
I:=[13, 44, 99, 184]; [n le 4 select I[n] else 4*Self(n-1) -6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..50]]; // Vincenzo Librandi, Jun 17 2013
-
Mathematica
Table[n^3 + 9*n^2 + 21*n + 13, {n, 0, 50}] (* or *) CoefficientList[Series[(13 - 8 x + x^2) / (1 - x)^4, {x, 0, 50}], x] (* Vincenzo Librandi, Jun 17 2013 *)
Formula
a(n) = (n + 1)*(n^2 + 8*n + 13).
G.f.: (13 - 8*x + x^2)/(1 - x)^4. - Vincenzo Librandi, Jun 17 2013
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). - Vincenzo Librandi, Jun 17 2013
E.g.f.: exp(x)*(13 + 31*x + 12*x^2 + x^3). - Franck Maminirina Ramaharo, Nov 29 2018
Comments