A226517 Number of (19,14)-reverse multiples with n digits.
0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 2, 1, 2, 1, 3, 2, 4, 3, 6, 4, 8, 5, 11, 7, 15, 10, 21, 14, 29, 19, 40, 26, 55, 36, 76, 50, 105, 69, 145, 95, 200, 131, 276, 181, 381, 250, 526, 345, 726, 476, 1002, 657, 1383, 907, 1909, 1252, 2635, 1728, 3637, 2385, 5020, 3292, 6929, 4544, 9564, 6272, 13201, 8657, 18221
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- V. E. Hogatt, M. Bicknell, Palindromic Compositions, Fib. Quart. 13(4) (1975) 350-356
- N. J. A. Sloane, 2178 And All That, Fib. Quart., 52 (2014), 99-120.
- N. J. A. Sloane, 2178 And All That [Local copy]
- Index entries for linear recurrences with constant coefficients, signature (0,1,0,0,0,0,0,1).
Programs
-
Maple
f:=proc(n) option remember; if n <= 5 then 0 elif n=6 then 1 elif n <= 9 then 0 elif n <= 11 then 1 else f(n-2)+f(n-8) fi; end; [seq(f(n),n=0..120)];
-
Mathematica
CoefficientList[Series[x^6 (1 - x^2 + x^4 + x^5) / (1 - x^2 - x^8), {x, 0, 80}], x] (* Vincenzo Librandi, Jun 18 2013 *) LinearRecurrence[{0,1,0,0,0,0,0,1},{0,0,0,0,0,0,1,0,0,0,1,1},80] (* Harvey P. Dale, Aug 23 2019 *)
Formula
G.f.: x^6*(1+x)*(1-x+x^4)/(1-x^2-x^8).
a(n) = a(n-2) + a(n-8) for n>11, with initial values a(0)-a(11) = 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1. [Bruno Berselli, Jun 17 2013]
Comments