A226527 Slowest-growing sequence of 3-almost primes (trientprimes) where 1/(tp+1) sums to 1 without actually reaching it.
8, 12, 18, 20, 27, 28, 30, 42, 44, 45, 50, 52, 63, 66, 68, 70, 75, 76, 78, 92, 98, 99, 102, 105, 110, 114, 116, 117, 124, 125, 130, 138, 147, 148, 153, 154, 164, 165, 170, 171, 172, 174, 175, 182, 186, 188, 190, 195, 207, 212, 222, 230, 231, 236, 238, 242, 244, 245, 246, 255, 258, 261, 266, 268, 273, 275, 279, 282, 284, 285, 286, 290, 292, 310, 316, 318, 322, 325, 332, 333, 338, 343, 345, 354, 356, 357, 363, 366, 369, 370, 374, 385, 387, 388, 399, 402, 404, 406, 410, 412, 418, 423, 425, 426, 428, 429, 430, 434, 435, 436, 8662, 44335708, 1251938572491943, 1505273212784203338150808798466, 680617602541158152398258079780439819108542271775727566330763
Offset: 1
Programs
-
Mathematica
kAlmostPrimeQ[n_, k_: 2] := Plus @@ Last /@ FactorInteger@ n == k (* For those who have Mmca v or later, you could use PrimeOmega@ n == k *) NextkAlmostPrime[n_, k_: 2, m_: 1] := Block[{c = 0, sgn = Sign[m]}, kap = n + sgn; While[c < Abs[m], While[ PrimeOmega[kap] != k, If[sgn < 0, kap--, kap++]]; If[ sgn < 0, kap--, kap++]; c++]; kap + If[sgn < 0, 1, -1]]; a[n_] := a[n] = Block[{sm = Sum[1/(a[i] + 1), {i, n - 1}]}, NextkAlmostPrime[ Max[a[n - 1], Floor[1/(1 - sm)]]]]; a[0] = 1; Do[ Print[{n, a[n] // Timing}], {n, 25}]
Comments