cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A226527 Slowest-growing sequence of 3-almost primes (trientprimes) where 1/(tp+1) sums to 1 without actually reaching it.

Original entry on oeis.org

8, 12, 18, 20, 27, 28, 30, 42, 44, 45, 50, 52, 63, 66, 68, 70, 75, 76, 78, 92, 98, 99, 102, 105, 110, 114, 116, 117, 124, 125, 130, 138, 147, 148, 153, 154, 164, 165, 170, 171, 172, 174, 175, 182, 186, 188, 190, 195, 207, 212, 222, 230, 231, 236, 238, 242, 244, 245, 246, 255, 258, 261, 266, 268, 273, 275, 279, 282, 284, 285, 286, 290, 292, 310, 316, 318, 322, 325, 332, 333, 338, 343, 345, 354, 356, 357, 363, 366, 369, 370, 374, 385, 387, 388, 399, 402, 404, 406, 410, 412, 418, 423, 425, 426, 428, 429, 430, 434, 435, 436, 8662, 44335708, 1251938572491943, 1505273212784203338150808798466, 680617602541158152398258079780439819108542271775727566330763
Offset: 1

Views

Author

Keywords

Comments

See comments in A226526.
Deviates from A014612 after the 110th term.

Crossrefs

Programs

  • Mathematica
    kAlmostPrimeQ[n_, k_: 2] := Plus @@ Last /@ FactorInteger@ n == k (* For those who have Mmca v or later, you could use PrimeOmega@ n == k *) NextkAlmostPrime[n_, k_: 2, m_: 1] := Block[{c = 0, sgn = Sign[m]}, kap = n + sgn; While[c < Abs[m], While[ PrimeOmega[kap] != k, If[sgn < 0, kap--, kap++]]; If[ sgn < 0, kap--, kap++]; c++]; kap + If[sgn < 0, 1, -1]]; a[n_] := a[n] = Block[{sm = Sum[1/(a[i] + 1), {i, n - 1}]}, NextkAlmostPrime[ Max[a[n - 1], Floor[1/(1 - sm)]]]]; a[0] = 1; Do[ Print[{n, a[n] // Timing}], {n, 25}]