A265211 Squares that become prime when their rightmost digit is removed.
25, 36, 196, 676, 1936, 2116, 3136, 4096, 5476, 5776, 7396, 8836, 11236, 21316, 23716, 26896, 42436, 51076, 55696, 59536, 64516, 65536, 75076, 81796, 87616, 92416, 98596, 106276, 118336, 119716, 132496, 179776, 190096, 198916, 206116, 215296, 256036, 274576, 287296
Offset: 1
Examples
196 = 14^2 becomes the prime 19 when its rightmost digit is removed. 3136 = 56^2 becomes the prime 313 when its rightmost digit is removed.
Links
- K. D. Bajpai, Table of n, a(n) for n = 1..10000
- Wikipedia, Bunyakovsky conjecture.
Programs
-
Magma
[k: n in [1..100] | IsPrime(Floor(k/10)) where k is n^2];
-
Maple
select(t -> isprime(floor(t/10)), [seq(i^2, i=1..1000)]); # Robert Israel, Jan 12 2016
-
Mathematica
A265211 = {}; Do[k = n^2; If[PrimeQ[Floor[k/10]], AppendTo[A265211 , k]], {n, 1500}]; A265211 Select[Range[540]^2,PrimeQ[FromDigits[Most[IntegerDigits[#]]]]&] (* Harvey P. Dale, Aug 02 2016 *)
-
PARI
for(n=1,1000, k=n^2; if(isprime(k\10), print1(k, ", ")));
Comments