A226533 a(n) = smallest integer m such that m^n is a sum of two successive primes.
5, 6, 2, 150, 22, 82, 2, 258, 70, 30, 42, 18, 2, 12, 262, 58, 460, 36, 552, 24, 318, 344, 450, 54, 274, 88, 36, 92, 90, 188, 554, 20, 404, 700, 240, 6, 136, 262, 578, 222, 2182, 276, 162, 60, 142, 326, 176, 198, 930, 1116
Offset: 1
Keywords
Examples
5^1 = 5 = 2 + 3, 6^2 = 36 = 17 + 19, 2^3 = 8 = 3 + 5, 150^4 =506250000 = 253124999 + 253125001.
Links
- Zak Seidov, Table of n, a(n) for n = 1..150
Programs
-
Mathematica
a[n_] := For[m = 2, True, m++, p = m^n/2 // NextPrime[#, -1]&; q = NextPrime[p]; If[p + q == m^n, Print["a(", n, ") = ", m]; Return[m]]]; Table[a[n], {n, 1, 50}] (* Jean-François Alcover, Jun 10 2013 *) tsp[n_]:=Module[{m=1,t},t=m^n;While[NextPrime[t/2]+NextPrime[t/2, -1]! = t,m++;t=m^n];m]; Array[tsp,50] (* Harvey P. Dale, Nov 10 2014 *)
-
PARI
a(n)=if(n==1,return(5)); my(m=1,M,p); while(1,M=m++^n;p=precprime(M/2); ispseudoprime(M-p) && M-p==nextprime(M/2) && return(m)) \\ Charles R Greathouse IV, Jun 10 2013
Extensions
a(41)-a(50) from Jean-François Alcover, Jun 10 2013