A226599 Numbers which are the sum of two squared primes in exactly four ways (ignoring order).
10370, 10730, 11570, 12410, 13130, 19610, 22490, 25010, 31610, 38090, 38930, 39338, 39962, 40970, 41810, 55250, 55970, 59330, 59930, 69530, 70850, 73730, 76850, 77090, 89570, 98090, 98930, 103298, 118898, 125450, 126290, 130730, 135218, 139490
Offset: 1
Keywords
Examples
10370 = 13^2 + 101^2 = 31^2 + 97^2 = 59^2 + 83^2 = 71^2 + 73^2. 10730 = 11^2 + 103^2 = 23^2 + 101^2 = 53^2 + 89^2 = 67^2 + 79^2.
References
- Stan Wagon, Mathematica in Action, Springer, 2000 (2nd ed.), Ch. 17.5, pp. 375-378.
Links
- T. D. Noe, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Maple
Prime2PairsSum := s -> select(x ->`if`(andmap(isprime, x), true, false), numtheory:-sum2sqr(s)): for n from 2 to 10^6 do if nops(Prime2PairsSum(n)) = 4 then print(n, Prime2PairsSum(n)) fi; od;
-
Mathematica
(* Assuming mod(a(n),24) = 2 *) Reap[ For[ k = 2, k <= 2 + 240000, k = k + 24, pr = Select[ PowersRepresentations[k, 2, 2], PrimeQ[#[[1]]] && PrimeQ[#[[2]]] &]; If[Length[pr] == 4 , Print[k]; Sow[k]]]][[2, 1]] (* Jean-François Alcover, Jun 14 2013 *)
Formula
a(n) = p^2 + q^2; p, q are (not necessarily different) primes
Comments