cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Henk Koppelaar

Henk Koppelaar's wiki page.

Henk Koppelaar has authored 3 sequences.

A226599 Numbers which are the sum of two squared primes in exactly four ways (ignoring order).

Original entry on oeis.org

10370, 10730, 11570, 12410, 13130, 19610, 22490, 25010, 31610, 38090, 38930, 39338, 39962, 40970, 41810, 55250, 55970, 59330, 59930, 69530, 70850, 73730, 76850, 77090, 89570, 98090, 98930, 103298, 118898, 125450, 126290, 130730, 135218, 139490
Offset: 1

Author

Henk Koppelaar, Jun 13 2013

Keywords

Comments

It appears that all first differences are divisible by 24. - Zak Seidov, Jun 14 2013

Examples

			10370 = 13^2 + 101^2 = 31^2 + 97^2 = 59^2 + 83^2 = 71^2 + 73^2.
10730 = 11^2 + 103^2 = 23^2 + 101^2 = 53^2 + 89^2 = 67^2 + 79^2.
		

References

  • Stan Wagon, Mathematica in Action, Springer, 2000 (2nd ed.), Ch. 17.5, pp. 375-378.

Crossrefs

Cf. A054735 (restricted to twin primes), A037073, A069496.
Cf. A045636 (sum of two squared primes is a superset).
Cf. A214511 (least number having n representations).
Cf. A225104 (numbers having at least three representations is a superset).
Cf. A226539, A226562 (sums decomposed in exactly two and three ways).

Programs

  • Maple
    Prime2PairsSum := s -> select(x ->`if`(andmap(isprime, x), true, false),
       numtheory:-sum2sqr(s)):
    for n from 2 to 10^6 do
      if nops(Prime2PairsSum(n)) = 4 then print(n, Prime2PairsSum(n)) fi;
    od;
  • Mathematica
    (* Assuming mod(a(n),24) = 2 *) Reap[ For[ k = 2, k <= 2 + 240000, k = k + 24, pr = Select[ PowersRepresentations[k, 2, 2], PrimeQ[#[[1]]] && PrimeQ[#[[2]]] &]; If[Length[pr] == 4 , Print[k]; Sow[k]]]][[2, 1]] (* Jean-François Alcover, Jun 14 2013 *)

Formula

a(n) = p^2 + q^2; p, q are (not necessarily different) primes

A226562 Numbers which are the sum of two squared primes in exactly three ways (ignoring order).

Original entry on oeis.org

2210, 3770, 5330, 6290, 12818, 16490, 18122, 19370, 24050, 24650, 26690, 32810, 33410, 34970, 36530, 39650, 39770, 44642, 45050, 45890, 49010, 50690, 51578, 57770, 59450, 61610, 63050, 66170, 67490, 72410, 73610, 74210, 80330, 85202, 86210, 86330, 88010
Offset: 1

Author

Henk Koppelaar, Jun 11 2013

Keywords

Comments

Suggestion: difference between successive terms is always at least 3. (With the known 115885 terms <10^9, the smallest difference is 24.) - Zak Seidov, Jun 12 2013

Examples

			2210 = 19^2 + 43^2 = 23^2 + 41^2 = 29^2 + 37^2;
		

References

  • Stan Wagon, Mathematica in Action, Springer, 2000 (2nd ed.), Ch. 17.5, pp. 375-378.

Crossrefs

Cf. A054735 (restricted to twin primes), A037073, A069496.
Cf. A045636 (sum of two squared primes), A226539.
Cf. A214511 (least number having n representations).
Cf. A226539 (restricted to sums decomposed in exactly three ways).

Programs

  • Maple
    Prime2PairsSum := s -> select( x -> `if`(andmap(isprime, x), true, false), numtheory:-sum2sqr(s)):
    for n from 2 to 10 do
    if nops(Prime2PairsSum(n)) = 3 then print(n,Prime2PairsSum(n)) fi
    od;
  • Mathematica
    Select[Range@20000, Length[Select[ PowersRepresentations[#, 2, 2], And @@ PrimeQ[#] &]] == 3 &] (* Giovanni Resta, Jun 11 2013 *)

Extensions

a(22)-a(37) from Giovanni Resta, Jun 11 2013

A226539 Numbers which are the sum of two squared primes in exactly two ways (ignoring order).

Original entry on oeis.org

338, 410, 578, 650, 890, 1010, 1130, 1490, 1730, 1802, 1898, 1970, 2330, 2378, 2738, 3050, 3170, 3530, 3650, 3842, 3890, 4010, 4658, 4850, 5018, 5090, 5162, 5402, 5450, 5570, 5618, 5690, 5858, 6170, 6410, 6530, 6698, 7010, 7178, 7202, 7250, 7850, 7970, 8090
Offset: 1

Author

Henk Koppelaar, Jun 10 2013

Keywords

Examples

			338 = 7^2 + 17^2 = 13^2 + 13^2;
410 = 7^2 + 19^2 = 11^2 + 17^2.
		

References

  • Stan Wagon, Mathematica in Action, Springer, 2000 (2nd ed.), Ch. 17.5, pp. 375-378.

Crossrefs

Cf. A054735 (restricted to twin primes), A037073, A069496.
Cf. A045636 (sum of two squared primes: a superset).
Cf. A214511 (least number having n representations).
Cf. A226562 (restricted to sums decomposed in exactly three ways).

Programs

  • Maple
    Prime2PairsSum := p -> select(x ->`if`(andmap(isprime, x),true,false), numtheory:-sum2sqr(p)):
    for n from 2 to 10^6 do
      if nops(Prime2PairsSum(n)) = 2 then print(n, Prime2PairsSum(n)) fi;
    od;
  • Mathematica
    Select[Range@10000, Length[Select[ PowersRepresentations[#, 2, 2], And @@ PrimeQ[#] &]] == 2 &] (* Giovanni Resta, Jun 11 2013 *)
  • PARI
    select( is_A226539(n)={#[0|t<-sum2sqr(n),isprime(t[1])&&isprime(t[2])]==2}, [1..10^4]) \\ For more efficiency, apply selection to A045636. See A133388 for sum2sqr(). - M. F. Hasler, Dec 12 2019

Extensions

a(25)-a(44) from Giovanni Resta, Jun 11 2013