cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A226622 Expansion of phi(x^2) / f(-x) in powers of x where phi(), f() are Ramanujan theta functions.

Original entry on oeis.org

1, 1, 4, 5, 9, 13, 21, 29, 46, 62, 90, 122, 171, 227, 311, 408, 545, 709, 933, 1198, 1555, 1980, 2536, 3205, 4063, 5092, 6400, 7966, 9928, 12281, 15198, 18684, 22979, 28097, 34346, 41789, 50813, 61527, 74453, 89757, 108114, 129809, 155704, 186221, 222503
Offset: 0

Views

Author

Michael Somos, Aug 31 2013

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			1 + x + 4*x^2 + 5*x^3 + 9*x^4 + 13*x^5 + 21*x^6 + 29*x^7 + 46*x^8 + 62*x^9 + ...
1/q + q^23 + 4*q^47 + 5*q^71 + 9*q^95 + 13*q^119 + 21*q^143 + 29*q^167 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, q^2] / QPochhammer[ q], {q, 0, n}]
  • PARI
    {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^4 + A)^5 / (eta(x + A) * eta(x^2 + A)^2 * eta(x^8 + A)^2), n))}

Formula

Expansion of q^(1/24) * eta(q^4)^5 / (eta(q) * eta(q^2)^2 * eta(q^8)^2) in powers of q.
Euler transform of period 8 sequence [ 1, 3, 1, -2, 1, 3, 1, 0, ...].
G.f.: (Sum_{k in Z} x^(2*k^2)) / (Product_{k>0} (1 - x^k)).
a(n) = A022597(2*n) = A073252(2*n).
G.f. A(x) satisfies A(x^2) = ( chi(x)^2 + chi(-x)^2 )/2, where chi(x) = Product_{k >= 0} 1 + x^(2*k+1) is the g.f. of A000700. Cf. A226635. - Peter Bala, Sep 29 2023
a(n) ~ exp(Pi*sqrt(2*n/3)) / (2^(9/4) * 3^(1/4) * n^(3/4)). - Vaclav Kotesovec, Jun 29 2025