A226703 Triangle read by rows: T(n,k) = binomial(2*n,k)*Stirling2(2*n-k,n).
1, 1, 2, 7, 12, 6, 90, 150, 90, 20, 1701, 2800, 1820, 560, 70, 42525, 69510, 47250, 16800, 3150, 252, 1323652, 2153844, 1506582, 582120, 131670, 16632, 924, 49329280, 80015936, 57093036, 23291268, 5885880, 924924, 84084, 3432, 2141764053, 3466045440, 2509478400, 1063782720, 289429140, 51891840, 6006000, 411840, 12870
Offset: 0
Examples
1, 1 +2*x, 7 +12*x +6*x^2, 90 +150*x +90*x^2 +20*x^3, 1701 +2800*x +1820*x^2 +560*x^3 +70*x^4.
References
- G. P. Egorychev. “Integral Representation and the Computation of Combinatorial Sums.” Translations of Mathematical Monographs, Vol. 59, American Mathematical Society, (1984).
- F. J. Papp. “Another Proof of Tepper’s Inequality.” Math. Magazine 45 (1972): 119-121.
Programs
-
Mathematica
Flatten[Table[Binomial[2n,k]StirlingS2[2n-k,n],{n,0,10},{k,0,n}]] (* Harvey P. Dale, Jun 19 2013 *)
Comments