cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A226703 Triangle read by rows: T(n,k) = binomial(2*n,k)*Stirling2(2*n-k,n).

Original entry on oeis.org

1, 1, 2, 7, 12, 6, 90, 150, 90, 20, 1701, 2800, 1820, 560, 70, 42525, 69510, 47250, 16800, 3150, 252, 1323652, 2153844, 1506582, 582120, 131670, 16632, 924, 49329280, 80015936, 57093036, 23291268, 5885880, 924924, 84084, 3432, 2141764053, 3466045440, 2509478400, 1063782720, 289429140, 51891840, 6006000, 411840, 12870
Offset: 0

Views

Author

Vladimir Kruchinin, Jun 15 2013

Keywords

Comments

Polynomials based on Extended Tepper's Identity
P(n,x)=sum(j=0..n, (-1)^(n-j)*binomial(n,j)*(x+j)^(2*n))/n!.
P(n,x)=sum(j=0..n, binomial(2*n,j)*stirling2(2*n-j,n)*x^j).
P(n,1)=A129506(n).

Examples

			1,
1 +2*x,
7 +12*x +6*x^2,
90 +150*x +90*x^2 +20*x^3,
1701 +2800*x +1820*x^2 +560*x^3 +70*x^4.
		

References

  • G. P. Egorychev. “Integral Representation and the Computation of Combinatorial Sums.” Translations of Mathematical Monographs, Vol. 59, American Mathematical Society, (1984).
  • F. J. Papp. “Another Proof of Tepper’s Inequality.” Math. Magazine 45 (1972): 119-121.

Crossrefs

Programs

  • Mathematica
    Flatten[Table[Binomial[2n,k]StirlingS2[2n-k,n],{n,0,10},{k,0,n}]] (* Harvey P. Dale, Jun 19 2013 *)

Formula

T(n,k) = binomial(2*n,k)*stirling2(2*n-k,n).
T(n,n) = A000984(n).
T(n,0) = A007820(n).