A226741 Column 4 of array in A226513.
75, 308, 807, 1704, 3155, 5340, 8463, 12752, 18459, 25860, 35255, 46968, 61347, 78764, 99615, 124320, 153323, 187092, 226119, 270920, 322035, 380028, 445487, 519024, 601275, 692900, 794583, 907032, 1030979, 1167180, 1316415, 1479488, 1657227, 1850484
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Connor Ahlbach, Jeremy Usatine and Nicholas Pippenger, Barred Preferential Arrangements, Electron. J. Combin., Volume 20, Issue 2 (2013), #P55.
- Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
Programs
-
Magma
[(n+1)^4+12*(n+1)^3+36*(n+1)^2+26*(n+1): n in [0..35]];
-
Magma
I:=[75, 308, 807, 1704, 3155]; [n le 5 select I[n] else 5*Self(n-1)-10*Self(n-2)+10*Self(n-3)-5*Self(n-4)+Self(n-5): n in [1..40]];
-
Mathematica
Table[(n+1)^4 + 12 (n+1)^3 + 36 (n+1)^2 + 26 (n+1), {n, 0, 40}] (* or *) CoefficientList[Series[(75 - 67 x + 17 x^2 - x^3) / (1 - x)^5, {x, 0, 40}], x]
Formula
G.f.: (75 - 67*x + 17*x^2 - x^3)/(1 - x)^5.
a(n) = (n + 1)^4 + 12*(n + 1)^3 + 36*(n + 1)^2 + 26*(n + 1).
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5).
E.g.f.: exp(x)*(75 + 233*x + 133*x^2 + 22*x^3 + x^4). - Franck Maminirina Ramaharo, Nov 29 2018
Comments