A226744 Round((10^n)/(log(10^n) - 1)).
8, 28, 169, 1218, 9512, 78030, 661459, 5740304, 50701542, 454011971, 4110416301, 37550193650, 345618860221, 3201414635781, 29816233849001, 279007258230820, 2621647966812031, 24723998785919976, 233922961602470391, 2219671974013732243
Offset: 1
Keywords
Examples
a(2) = 28 because (10^2)/(log(10^2) - 1) = 27.7379415786....
References
- A. M. Legendre, Essai sur la Théorie des Nombres, Paris: Duprat, 1808.
Links
- Eric Weisstein's World of Mathematics, Legendre's Constant
- Eric Weisstein's World of Mathematics, Prime Counting Function
- Eric Weisstein's World of Mathematics, Prime Number Theorem
Programs
-
Mathematica
Table[Round[10^n/(Log[10^n] - 1)], {n, 20}]
-
PARI
for(n=1, 20, print1(round(10^n/(log(10^n)-1)), ", "));
Formula
a(n) = round((10^n)/(log(10^n) - 1)).