A226780 Triangular array read by rows. T(n,k) is the number of 2 tuple lists of length n that have exactly k coincidences; n >= 0, 0 <= k <= n.
1, 0, 1, 3, 0, 1, 26, 9, 0, 1, 453, 104, 18, 0, 1, 11844, 2265, 260, 30, 0, 1, 439975, 71064, 6795, 520, 45, 0, 1, 22056222, 3079825, 248724, 15855, 910, 63, 0, 1, 1436236809, 176449776, 12319300, 663264, 31710, 1456, 84, 0, 1
Offset: 0
Examples
1; 0, 1; 3, 0, 1; 26, 9, 0, 1; 453, 104, 18, 0, 1; 11844, 2265, 260, 30, 0, 1; 439975, 71064, 6795, 520, 45, 0, 1; 22056222, 3079825, 248724, 15855, 910, 63, 0, 1;
Links
- Alois P. Heinz, Rows n = 0..100, flattened
Crossrefs
Cf. A008290.
Programs
-
Maple
b:= proc(n) option remember; `if`(n<2, 1-n, n^2*b(n-1)+n*(n-1)*b(n-2)+(-1)^n) end: T:= (n, k)-> binomial(n, k) * b(n-k): seq(seq(T(n, k), k=0..n), n=0..10); # Alois P. Heinz, Jun 21 2013
-
Mathematica
a = Table[Sum[(-1)^k Binomial[n,k](n-k)!^2, {k,0,n}], {n,0,15}]; Table[Drop[Transpose[Table[Table[Binomial[n,i]*a[[n-i+1]], {n,0,10}], {i,0,10}]][[j]], -11+j], {j, 10}]//Grid
Comments