A226789 Triangular numbers obtained as the concatenation of n+1 and n.
10, 21, 26519722651971, 33388573338856, 69954026995401, 80863378086336
Offset: 1
Examples
26519722651971 is the concatenation of 2651972 and 2651971 and a triangular number, because 26519722651971 = 7282818*7282819/2.
Programs
-
Mathematica
TriangularQ[n_] := IntegerQ[Sqrt[1 + 8*n]]; t = {}; Do[s = FromDigits[Join[IntegerDigits[n+1], IntegerDigits[n]]]; If[TriangularQ[s], AppendTo[t, s]], {n, 100000}]; t (* T. D. Noe, Jun 18 2013 *)
-
PARI
concatint(a,b)=eval(concat(Str(a),Str(b))) istriang(x)=issquare(8*x+1) {for(n=1,10^7,a=concatint(n+1,n);if(istriang(a),print(a)))}
-
Python
from math import isqrt def istri(n): t = 8*n+1; return isqrt(t)**2 == t def afind(klimit, kstart=0): strk = "0" for k in range(kstart, klimit+1): strkp1 = str(k+1) t = int(strkp1 + strk) if istri(t): print(t, end=", ") strk = strkp1 afind(81*10**5) # Michael S. Branicky, Oct 21 2021
-
Python
# alternate version def isconcat(n): if n < 10: return False s = str(n) mid = (len(s)+1)//2 lft, rgt = int(s[:mid]), int(s[mid:]) return lft - 1 == rgt def afind(tlimit, tstart=0): for t in range(tstart, tlimit+1): trit = t*(t+1)//2 if isconcat(trit): print(trit, end=", ") afind(13*10**6) # Michael S. Branicky, Oct 21 2021
Comments