cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A226800 Column 5 of array in A226513.

Original entry on oeis.org

541, 2612, 7803, 18424, 37625, 69516, 119287, 193328, 299349, 446500, 645491, 908712, 1250353, 1686524, 2235375, 2917216, 3754637, 4772628, 5998699, 7463000, 9198441, 11240812, 13628903, 16404624, 19613125, 23302916, 27525987, 32337928, 37798049, 43969500
Offset: 0

Views

Author

Vincenzo Librandi, Jun 18 2013

Keywords

Comments

This is the case h = 5 in Sum_{k=0..h} S2(h,k)*k!*binomial(n+k,k), where S2 is the Stirling number of the second kind (see the Ahlbach et al. paper, Theorem 3). [Bruno Berselli, Jun 20 2013]

Crossrefs

Cf. columns 2, 3, 4 and 6 of A226513: A005563, A226514, A226741, A226801.

Programs

  • Magma
    [(n+1)^5+20*(n+1)^4+120*(n+1)^3+250*(n+1)^2+150*(n+1): n in [0..30]];
    
  • Magma
    I:=[541,2612,7803,18424,37625,69516]; [n le 6 select I[n] else 6*Self(n-1)-15*Self(n-2)+20*Self(n-3)-15*Self(n-4)+6*Self(n-5)-Self(n-6): n in [1..30]];
  • Mathematica
    Table[(n + 1)^5 + 20 (n+1)^4 + 120 (n+1)^3 + 250 (n+1)^2 + 150 (n+1), {n, 0, 40}] (* or *) CoefficientList[Series[(541 - 634 x + 246 x^2 - 34 x^3 + x^4) / (1 - x)^6, {x, 0, 30}], x]

Formula

G.f.: (541 - 634*x + 246*x^2 - 34*x^3 + x^4)/(1 - x)^6.
a(n) = (n + 1)*(n^4 + 24*n^3 + 186*n^2 + 554*n + 541).
a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6).
E.g.f.: exp(x)*(541 + 2071*x + 1560*x^2 + 385*x^3 + 35*x^4 + x^5). - Franck Maminirina Ramaharo, Nov 29 2018