A226834
Smallest semiprime (A001358) which is at the beginning of an arithmetic progression of n semiprimes whose largest term is as small as possible.
Original entry on oeis.org
4, 4, 6, 10, 10, 201, 133, 133, 635, 697, 2215, 2215, 4979, 2995, 13561, 22903, 1691, 5951, 72697, 72697, 72697, 172151, 172151, 1782371, 1782371, 3660743, 3660743, 3660743, 3660743, 13298267, 2235913, 41963249
Offset: 1
A226835
Triangle whose n-th row has the smallest n 3-almost primes in an arithmetic progression.
Original entry on oeis.org
8, 8, 12, 12, 20, 28, 20, 44, 68, 92, 20, 44, 68, 92, 116, 402, 410, 418, 426, 434, 442, 266, 370, 474, 578, 682, 786, 890, 266, 370, 474, 578, 682, 786, 890, 994, 1270, 1414, 1558, 1702, 1846, 1990, 2134, 2278, 2422, 1394, 1586, 1778, 1970, 2162, 2354, 2546, 2738, 2930, 3122
Offset: 1
Triangle:
8,
8, 12,
12, 20, 28,
20, 44, 68, 92,
20, 44, 68, 92, 116,
402, 410, 418, 426, 434, 442,
266, 370, 474, 578, 682, 786, 890,
266, 370, 474, 578, 682, 786, 890, 994,
1270, 1414, 1558, 1702, 1846, 1990, 2134, 2278, 2422,
1394, 1586, 1778, 1970, 2162, 2354, 2546, 2738, 2930, 3122
Cf.
A226833 (similar triangle of semiprimes).
-
TriPrimeQ[n_Integer] := If[Abs[n] < 2, False, (3 == Plus @@ Transpose[FactorInteger[Abs[n]]][[2]])]; p3 = Select[Range[4000], TriPrimeQ]; nn = Length[p3]; t = {}; n = 0; last = 1; While[n++; found = False; last = n; While[k = last - 1; p3Short = Take[p3, last]; While[d = p3[[last]] - p3[[k]]; nums = Table[p3[[last]] - i*d, {i, 0, n - 1}]; int = Intersection[nums, p3Short]; nums[[-1]] > 0 && Length[int] < n, k--]; nums[[-1]] <= 0 && last < nn, last++]; If[last < nn, AppendTo[t, Reverse[nums]]]; last < nn]; t
A227067
Least n-prime p such that the number of even n-primes (<= p) equals the number of odd n-primes (<= p).
Original entry on oeis.org
3, 51, 32151, 300863849741
Offset: 1
The first such prime is 3 because up to 3 there are an equal number of even and odd primes. The first such semiprime is 51 because there are 9 evens and 9 odds: 4, 6, 10, 14, 22, 26, 34, 38, 46 and 9, 15, 21, 25, 33, 35, 39, 49, 51.
-
nn = 3; Table[p = 1; odds = 0; evens = 0; While[odds*evens == 0 || odds != evens, p++; If[PrimeOmega[p] == n, If[OddQ[p], odds++, evens++]]]; p, {n, nn}]
Showing 1-3 of 3 results.
Comments