cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A226897 a(n) is the total number of parts in the set of partitions of an n X n square lattice into squares, considering only the list of parts.

Original entry on oeis.org

1, 5, 16, 59, 156, 529, 1351, 3988, 10236, 27746, 66763, 176783, 412450
Offset: 1

Views

Author

Keywords

Comments

The sequence was derived from the documents in the Links section. The documents are first specified in the Links section of A034295.

Examples

			For n = 3, the partitions are:
Square side 1 2 3 Total Parts
            9 0 0     9
            5 1 0     6
            0 0 1     1
Total                16
So a(3) = 16.
		

Crossrefs

Programs

  • Maple
    b:= proc(n, l) option remember; local i, k, s, t;
          if max(l[])>n then {} elif n=0 or l=[] then {0}
        elif min(l[])>0 then t:=min(l[]); b(n-t, map(h->h-t, l))
        else for k do if l[k]=0 then break fi od; s:={};
             for i from k to nops(l) while l[i]=0 do s:=s union
                 map(v->v+x^(1+i-k), b(n, [l[j]$j=1..k-1,
                     1+i-k$j=k..i, l[j]$j=i+1..nops(l)]))
             od; s
          fi
        end:
    a:= n-> add(coeff(add(j, j=b(n, [0$n])), x, i), i=1..n):
    seq(a(n), n=1..9);  # Alois P. Heinz, Jun 21 2013
  • Mathematica
    $RecursionLimit = 1000; b[n_, l_List] := b[n, l] = Module[{i, k, s, t}, Which [Max[l]>n, {}, n == 0 || l == {}, {0}, Min[l]>0, t = Min[l]; b[n-t, l-t], True, k = Position[l, 0, 1, 1][[1, 1]]; s = {}; For[i = k, i <= Length[l] && l[[i]]== 0, i++, s = s ~Union~ Map[Function[{v}, v+x^(1+i-k)], b[n, Join[l[[1 ;; k-1]], Array[1+i-k&, i-k+1], l[[i+1 ;; -1]] ]]]]; s]]; a[n_] := Sum[Coefficient[Sum[j, {j, b[n, Array[0&, n]]}], x, i], {i, 1, n}]; Table[a[n], {n, 1, 9}] (* Jean-François Alcover, May 29 2015, after Alois P. Heinz *)