A226906 Triangle read by rows: T(n,k) is the total number of parts of size k^2, 1 <= k <= n, in the set of partitions of an n X n square lattice into squares, considering only the list of parts.
1, 4, 1, 14, 1, 1, 47, 10, 1, 1, 134, 16, 4, 1, 1, 415, 82, 24, 6, 1, 1, 1102, 165, 60, 16, 6, 1, 1, 3076, 621, 169, 90, 22, 8, 1, 1, 7986, 1361, 577, 194, 80, 28, 8, 1, 1, 20930, 4254, 1464, 643, 294, 114, 35, 10, 1, 1, 50755, 9494, 3667, 1491, 858, 297, 148, 41, 10, 1, 1
Offset: 1
Examples
For n = 3, the partitions are: Square side 1 2 3 9 0 0 5 1 0 0 0 1 Total 14 1 1 So T(3,1) = 14, T(3,2) = 1, T(3,3) = 1.
Links
- Christopher Hunt Gribble, Rows n = 1..13, flattened
- Jon E. Schoenfield, Table of solutions for n <= 12
- Alois P. Heinz, More ways to divide an 11 X 11 square into sub-squares
- Alois P. Heinz, List of different ways to divide a 13 X 13 square into sub-squares
Programs
-
Maple
b:= proc(n, l) option remember; local i, k, s, t; if max(l[])>n then {} elif n=0 or l=[] then {0} elif min(l[])>0 then t:=min(l[]); b(n-t, map(h->h-t, l)) else for k do if l[k]=0 then break fi od; s:={}; for i from k to nops(l) while l[i]=0 do s:=s union map(v->v+x^(1+i-k), b(n, [l[j]$j=1..k-1, 1+i-k$j=k..i, l[j]$j=i+1..nops(l)])) od; s fi end: T:= n-> seq(coeff(add(j, j=b(n, [0$n])), x, i), i=1..n): seq(T(n), n=1..10); # Alois P. Heinz, Jun 21 2013
-
Mathematica
b[n_, l_List] := b[n, l] = Module[{i, k, s, t}, Which[Max[l] > n, {}, n == 0 || l == {}, {0}, Min[l] > 0, t = Min[l]; b[n - t, l - t], True, For[k = 1, k <= Length[l], k++, If[l[[k]] == 0, Break[]]]; s = {}; For[i = k, i <= Length[l] && l[[i]] == 0, i++, s = s ~Union~ Map[# + x^(1 + i - k)&, b[n, Join[l[[1 ;; k - 1]], Array[1 + i - k &, i - k + 1], l[[i + 1 ;; Length[l]]]]]]]; s]]; T[n_] := Table[Coefficient[Sum[j, {j, b[n, Array[0 &, n]]}], x, i], {i, 1, n}]; Table[T[n], {n, 1, 10}] // Flatten (* Jean-François Alcover, Jan 24 2016, after Alois P. Heinz *)
Formula
Sum_{k=1..n} T(n,k) * k^2 = A034295(n) * n^2.
Comments