cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A226956 a(0)=a(1)=1, a(n+2) = a(n+1) + a(n) - A128834(n).

Original entry on oeis.org

1, 1, 2, 2, 3, 5, 9, 15, 24, 38, 61, 99, 161, 261, 422, 682, 1103, 1785, 2889, 4675, 7564, 12238, 19801, 32039, 51841, 83881, 135722, 219602, 355323, 574925, 930249, 1505175, 2435424, 3940598, 6376021, 10316619, 16692641, 27009261, 43701902, 70711162, 114413063, 185124225, 299537289
Offset: 0

Views

Author

Paul Curtz, Jun 24 2013

Keywords

Comments

a(n) and differences:
1, 1, 2, 2, 3, 5, 9, 15, 24, 38, ... a(n)
0, 1, 0, 1, 2, 4, 6, 9, 14, 23, 38, ... b(n)
1, -1, 1, 1, 2, 2, 3, 5, 9, 15, 24, 38, ... a(n-2)
-2, 2, 0, 1, 0, 1, 2, 4, 6, 9, 14, 23, 38, ... b(n-2)
4, -2, 1,-1, 1, 1, 2, 2, 3, 5, 9, ... a(n-4)
-6, 3,-2, 2, 0, 1, 0, 1, 2, 4, 6, 9, ... b(n-4)
9, -5, 4,-2, 1,-1, 1, 1, 2, 2, 3, 5, 9, ... a(n-6)
-14, 9,-6, 3,-2, 2, 0, 1 0, 1, 2, ... b(n-6)
23,-15, 9,-5, 4,-2, 1, -1, 1, 1, 2, 2, ... a(n-8)
a(n)-b(n+1) = period 6: repeat 0, 1, 1, 0, -1, -1 = A128834(n).
Diagonals with the same number give 1, 2, 9, 38, ... = A001077(n).
Second column: the (n+2)-th term is identical to a(n+1) signed.
a(n+1) is identical to its twice shifted inverse binomial transform signed.
a(n+1)/a(n) tends to A001622 (the golden ratio) as n -> infinity.

Examples

			a(0) = a(1) = 1.
a(2) = a(3) = 2.
a(4) = 2*a(3) - a(2) + a(0) = 4-2+1 = 3.
a(5) = 6-2+1 = 5.
		

Crossrefs

Cf. Diagonals in A024490.

Programs

  • Magma
    I:=[1, 1, 2, 2]; [n le 4 select I[n] else 2*Self(n-1) - Self(n-2) + Self(n-4): n in [1..30]]; // G. C. Greubel, Jan 15 2018
  • Mathematica
    a[n_] := (LucasL[n] + {0, 1, 1, 0, -1, -1}[[Mod[n, 6] + 1]])/2; Table[a[n], {n, 0, 42}] (* Jean-François Alcover, Jun 28 2013, after R. J. Mathar *)
    LinearRecurrence[{2,-1,0,1}, {1,1,2,2}, 30] (* G. C. Greubel, Jan 15 2018 *)
  • PARI
    x='x+O('x^30); Vec((x-1)*(1+x^2)/((x^2+x-1)*(x^2-x+1))) \\ G. C. Greubel, Jan 15 2018
    

Formula

a(n+6) - a(n-6) = 20*A000045(n).
a(n) = 2*a(n-1) - a(n-2) + a(n-4).
a(n) = 3*a(n-3) + 5*a(n-6) + a(n-9) (plus many similar by telescoping the fundamental recurrence).
a(n+3) - a(n-3) = 2*A000032(n).
G.f.: (x-1)*(1+x^2) / ( (x^2+x-1)*(x^2-x+1) ). - R. J. Mathar, Jun 26 2013
2*a(n) = A000032(n) + A010892(n-1). - R. J. Mathar, Jun 26 2013
a(n+5) = a(n+4) + a(n+2) + A108014(n).
a(2n+1) + A226447(2n+2) = 2*A182895(n).
a(n) - a(n-2) = 0,2,1,1,1,3,6,... = abs(A111734(n-2)).