A226956 a(0)=a(1)=1, a(n+2) = a(n+1) + a(n) - A128834(n).
1, 1, 2, 2, 3, 5, 9, 15, 24, 38, 61, 99, 161, 261, 422, 682, 1103, 1785, 2889, 4675, 7564, 12238, 19801, 32039, 51841, 83881, 135722, 219602, 355323, 574925, 930249, 1505175, 2435424, 3940598, 6376021, 10316619, 16692641, 27009261, 43701902, 70711162, 114413063, 185124225, 299537289
Offset: 0
Examples
a(0) = a(1) = 1. a(2) = a(3) = 2. a(4) = 2*a(3) - a(2) + a(0) = 4-2+1 = 3. a(5) = 6-2+1 = 5.
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (2,-1,0,1)
Crossrefs
Cf. Diagonals in A024490.
Programs
-
Magma
I:=[1, 1, 2, 2]; [n le 4 select I[n] else 2*Self(n-1) - Self(n-2) + Self(n-4): n in [1..30]]; // G. C. Greubel, Jan 15 2018
-
Mathematica
a[n_] := (LucasL[n] + {0, 1, 1, 0, -1, -1}[[Mod[n, 6] + 1]])/2; Table[a[n], {n, 0, 42}] (* Jean-François Alcover, Jun 28 2013, after R. J. Mathar *) LinearRecurrence[{2,-1,0,1}, {1,1,2,2}, 30] (* G. C. Greubel, Jan 15 2018 *)
-
PARI
x='x+O('x^30); Vec((x-1)*(1+x^2)/((x^2+x-1)*(x^2-x+1))) \\ G. C. Greubel, Jan 15 2018
Formula
a(n+6) - a(n-6) = 20*A000045(n).
a(n) = 2*a(n-1) - a(n-2) + a(n-4).
a(n) = 3*a(n-3) + 5*a(n-6) + a(n-9) (plus many similar by telescoping the fundamental recurrence).
a(n+3) - a(n-3) = 2*A000032(n).
G.f.: (x-1)*(1+x^2) / ( (x^2+x-1)*(x^2-x+1) ). - R. J. Mathar, Jun 26 2013
a(n+5) = a(n+4) + a(n+2) + A108014(n).
a(n) - a(n-2) = 0,2,1,1,1,3,6,... = abs(A111734(n-2)).
Comments