cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A286350 a(n) = 2*a(n-1) - a(n-2) + a(n-4) for n>3, a(0)=0, a(1)=a(2)=2, a(3)=3.

Original entry on oeis.org

0, 2, 2, 3, 4, 7, 12, 20, 32, 51, 82, 133, 216, 350, 566, 915, 1480, 2395, 3876, 6272, 10148, 16419, 26566, 42985, 69552, 112538, 182090, 294627, 476716, 771343, 1248060, 2019404, 3267464, 5286867, 8554330, 13841197, 22395528, 36236726, 58632254, 94868979
Offset: 0

Views

Author

Paul Curtz, May 08 2017

Keywords

Comments

This is b(n) in A286311(n). As mentioned in A286311, the pair A286311(n) and, here a(n), are autosequences of the first kind.

Crossrefs

Cf. A022086, A128834, A226956 (same recurrence), A286311.

Programs

  • Magma
    I:=[0,2,2,3]; [n le 4 select I[n] else 2*Self(n-1) - Self(n-2) + Self(n-4): n in [1..30]]; // G. C. Greubel, Jan 15 2018
  • Mathematica
    LinearRecurrence[{2, -1, 0, 1}, {0, 2, 2, 3}, 40] (* or *)
    CoefficientList[Series[x (2 - 2 x + x^2)/((1 - x + x^2) (1 - x - x^2)), {x, 0, 39}], x] (* Michael De Vlieger, May 09 2017 *)
  • PARI
    concat(0, Vec(x*(2 - 2*x + x^2) / ((1 - x + x^2)*(1 - x - x^2)) + O(x^60))) \\ Colin Barker, May 09 2017
    

Formula

a(n) = A286311(n) + A128834(n).
a(n) = A022086(n) - A286311(n).
a(n) = (A022086(n) + A128834(n))/2.
G.f.: x*(2 - 2*x + x^2) / ((1 - x + x^2)*(1 - x - x^2)). - Colin Barker, May 09 2017

Extensions

More terms from Colin Barker, May 09 2017

A226447 Expansion of (1-x+x^3)/(1-x^2+2*x^3-x^4).

Original entry on oeis.org

1, -1, 1, -2, 4, -5, 9, -15, 23, -38, 62, -99, 161, -261, 421, -682, 1104, -1785, 2889, -4675, 7563, -12238, 19802, -32039, 51841, -83881, 135721, -219602, 355324, -574925, 930249, -1505175, 2435423, -3940598, 6376022, -10316619, 16692641, -27009261, 43701901, -70711162, 114413064, -185124225
Offset: 0

Views

Author

Paul Curtz, Jun 28 2013

Keywords

Comments

a(n) and its differences:
. 1, -1, 1, -2, 4, -5, 9, -15, 23, -38, ...
. -2, 2, -3, 6, -9, 14, -24, 38, -61, 100, ...
. 4, -5, 9, -15, 23, -38, 62, -99, 161, -261, ...
. -9, 14, -24, 38, -61, 100, -161, 260, -422, 682, ...
. 23, -38, 62, -99, 161, -261, 421, -682, 1104, -1785, ...
. -61, 100, -161, 260, -422, 682, -1103, 1786, -2889, 4674, ...
. 161, -261, 421, -682, 1104, -1785, 2889, -4675, 7563, -12238, ...
The third row is the first shifted .
The main diagonal is A001077(n). The fourth is -A001077(n+1). By "shifted" antidiagonals there are one 1, two 2's (-2 of the first row and 2), generally A001651(n) (-1)^n *A001077(n).
a(n+1)/a(n) tends to A001622 (the golden ratio) as n -> infinity.

Programs

  • Magma
    m:=50; R:=PowerSeriesRing(Integers(), m); Coefficients(R!((1-x+x^3)/(1-x^2+2*x^3-x^4))); // Bruno Berselli, Jul 04 2013
  • Mathematica
    a[0] = 1; a[1] = -1; a[n_] := a[n] = a[n-2] - a[n-1] - {-1, 0, 1, 1, 0, -1}[[Mod[n+1, 6] + 1]]; Table[a[n], {n, 0, 41}] (* Jean-François Alcover, Jul 04 2013 *)

Formula

a(0)=1, a(1)=-1; for n>1, a(n) = a(n-2) - a(n-1) + A010892(n+2).
a(n) = a(n-2) -2*a(n-3) +a(n-4).
a(n) = A226956(-n).
a(n+1) = A039834(n) - (-1)^n*A094686(n).
a(n+6) - a(n) = 2*(-1)^n* A000032(n+3).
a(2n+1) = -A226956(2n+1).
G.f. ( -1+x-x^3 ) / ( (x^2-x-1)*(1-x+x^2) ). - R. J. Mathar, Jun 29 2013
2*a(n) = A010892(n+2)+A061084(n+1). - R. J. Mathar, Jun 29 2013
Showing 1-2 of 2 results.