A227076 A triangle formed like Pascal's triangle, but with 5^n on the borders instead of 1.
1, 5, 5, 25, 10, 25, 125, 35, 35, 125, 625, 160, 70, 160, 625, 3125, 785, 230, 230, 785, 3125, 15625, 3910, 1015, 460, 1015, 3910, 15625, 78125, 19535, 4925, 1475, 1475, 4925, 19535, 78125, 390625, 97660, 24460, 6400, 2950, 6400, 24460, 97660, 390625
Offset: 0
Examples
Triangle begins as: 1; 5, 5; 25, 10, 25; 125, 35, 35, 125; 625, 160, 70, 160, 625; 3125, 785, 230, 230, 785, 3125; 15625, 3910, 1015, 460, 1015, 3910, 15625; 78125, 19535, 4925, 1475, 1475, 4925, 19535, 78125; 390625, 97660, 24460, 6400, 2950, 6400, 24460, 97660, 390625;
Links
- T. D. Noe, Rows n = 0..50 of triangle, flattened
Crossrefs
Programs
-
Magma
function T(n,k) // T = A227076 if k eq 0 or k eq n then return 5^n; else return T(n-1,k) + T(n-1,k-1); end if; end function; [T(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jan 10 2025
-
Maple
A227076 := proc(n,k) if k = 0 or k = n then 5^n ; elif k < 0 or k > n then 0; else procname(n-1,k)+procname(n-1,k-1) ; end if; end proc: # R. J. Mathar, Aug 09 2013
-
Mathematica
t = {}; Do[r = {}; Do[If[k == 0 || k == n, m = 5^n, m = t[[n, k]] + t[[n, k + 1]]]; r = AppendTo[r, m], {k, 0, n}]; AppendTo[t, r], {n, 0, 10}]; t = Flatten[t]
-
Python
from sage.all import * @CachedFunction def T(n,k): # T = A227076 if k==0 or k==n: return pow(5,n) else: return T(n-1,k) + T(n-1,k-1) print(flatten([[T(n,k) for k in range(n+1)] for n in range(13)])) # G. C. Greubel, Jan 10 2025
Formula
From R. J. Mathar, Aug 09 2013: (Start)
T(n,0) = 5^n.
T(n,1) = 5*A047850(n-1).
T(n,2) = 5*(5^n/80 + 3*n/4 + 51/16).
T(n,3) = 5*(5^n/320 + 45*n/16 + 3*n^2/8 + 819/64). (End)
Sum_{k=0..n} (-1)^k*T(n, k) = 20*(1+(-1)^n)*A009969(floor((n-1)/2)) - (3/5)*[n = 0]. - G. C. Greubel, Jan 10 2025
Comments