A227177 n occurs n^2 - n + 1 times.
0, 1, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7
Offset: 0
Keywords
Links
- Antti Karttunen, Table of n, a(n) for n = 0..9951
Programs
-
Mathematica
Flatten[Map[ConstantArray[#,(#-2) (#-1)+1]-1&,Range[7]]] (* Peter J. C. Moses, Jul 14 2013 *) Flatten[Table[#,{#^2-#+1}]&/@Range[0,7]] (* Harvey P. Dale, Sep 25 2013 *)
-
PARI
vec(N)=concat(vector(N, i, vector(i^2-i+1, j, i))) \\ Jinyuan Wang, Dec 01 2018
-
Python
from sympy import integer_nthroot def A227177(n): return (m:=integer_nthroot(k:=3*n,3)[0])+(k>m*(m**2+2)) # Chai Wah Wu, Nov 07 2024
Formula
a(k + (j^3-j^2+5*j)/3) = j for all j>=0, k=0..(j^2-j). - Jinyuan Wang, Nov 24 2018
a(n) = m+1 if 3n>m*(m^2+2) and a(n) = m otherwise where m=floor((3n)^(1/3)). - Chai Wah Wu, Nov 07 2024
Comments