cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A227324 Result of changing both the prime indices and the exponents in the prime factorization of n: increment odd values, decrement even values.

Original entry on oeis.org

1, 9, 4, 3, 49, 36, 25, 81, 2, 441, 169, 12, 121, 225, 196, 27, 361, 18, 289, 147, 100, 1521, 841, 324, 7, 1089, 16, 75, 529, 1764, 1369, 729, 676, 3249, 1225, 6, 961, 2601, 484, 3969, 1849, 900, 1681, 507, 98, 7569, 2809, 108, 5, 63, 1444, 363, 2209, 144
Offset: 1

Views

Author

Alex Ratushnyak, Jul 07 2013

Keywords

Comments

A self-inverse permutation on the positive integers: a(a(n)) = n.

Examples

			n = 2^3 => a(n) = 3^4 = 81.
n = 3^2 => a(n) = 2^1 = 2.
		

Crossrefs

Programs

  • Maple
    a:= n-> mul(ithprime(i[1])^i[2], i=map(x->map(y->y-1+2*irem(y, 2),
            [numtheory[pi](x[1]), x[2]]), ifactors(n)[2])):
    seq(a(n), n=1..100);  # Alois P. Heinz, Jul 17 2013
  • Mathematica
    a[n_] := If[n == 1, 1, Product[{p, e} = pe; Prime[BitXor[PrimePi[p] - 1, 1] + 1]^(BitXor[e - 1, 1] + 1), {pe, FactorInteger[n]}]];
    Array[a, 100] (* Jean-François Alcover, May 31 2019, after Andrew Howroyd *)
  • PARI
    a(n)={my(f=factor(n)); prod(i=1, #f~, my(p=f[i,1], e=f[i,2]); prime( bitxor( primepi(p)-1, 1)+1)^(bitxor(e-1, 1)+1))} \\ Andrew Howroyd, Jul 23 2018
    
  • Python
    primes = [2]*2
    primes[1] = 3
    def addPrime(k):
      for p in primes:
        if k%p==0:  return
        if p*p > k:  break
      primes.append(k)
    for n in range(5, 1000000, 6):
      addPrime(n)
      addPrime(n+2)
    for n in range(1,99):
      p = 1
      j = n
      i = 0
      while j>1:
        e = 0
        while j % primes[i] == 0:
          j /= primes[i]
          e+=1
        if e:
          e = ((e-1)^1) + 1
          p*= primes[i^1]**e
        i += 1
      print(str(p), end=', ')

Formula

Sum_{k=1..n} a(k) ~ c * n^3, where c = (1/3) * Product_{p prime} ((p-1)*(p^6 + q(p) +(p^3-1)*q(p)^2))/(p^7 - p*q(p)^2) = 0.3120270364..., where q(p) = nextprime(p) = A151800(p) if p has an odd index, and q(p) = prevprime(p) = A151799(p) otherwise. - Amiram Eldar, Sep 17 2023

Extensions

Keyword:mult added by Andrew Howroyd, Jul 23 2018