A227340 Primes of the form p^2 + q^2 - 1 where p and q are consecutive primes.
73, 457, 1801, 3049, 3529, 4057, 8209, 10369, 19609, 20809, 33289, 41521, 51217, 84121, 103969, 111409, 115201, 121081, 129049, 141529, 150169, 155689, 180097, 223129, 282769, 308929, 342841, 397849, 426889, 432457, 627217, 649801, 658969, 710449, 729649
Offset: 1
Keywords
Examples
a(1) = 5^2 + 7^2 - 1 = 73, which is prime.
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
Crossrefs
Cf. A072669.
Programs
-
Maple
K := proc(x) local a; a:=ithprime(x)^2+ithprime(x+1)^2-1; if (isprime(a))then RETURN (a) fi: end: seq(K(x), x=1..500); # K. D. Bajpai, Jul 07 2013 K:=proc()local x,a,c; c:=1; for x from 1 to 5000 do; a:=ithprime(x)^2+ithprime(x+1)^2-1;if isprime(a) then lprint(c,a);c:=c+1;fi;od; end: K(); # K. D. Bajpai, Jul 07 2013
-
Mathematica
t = {}; Do[p = Prime[n]; q = Prime[n + 1]; p2 = p^2 + q^2 - 1; If[PrimeQ[p2], AppendTo[t, p2]], {n, 200}]; t (* T. D. Noe, Jul 09 2013 *)
-
PARI
is(n)=if(isprime(n), my(x=sqrtint((n+1)\2)); nextprime(x+1)^2 +precprime(x)^2==n+1 && n>3, 0) \\ Charles R Greathouse IV, Jul 08 2013
-
PARI
p=2;forprime(q=3,1e5,if(isprime(t=p^2+q^2-1),print1(t", "));p=q) \\ Charles R Greathouse IV, Jul 08 2013