cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A227340 Primes of the form p^2 + q^2 - 1 where p and q are consecutive primes.

Original entry on oeis.org

73, 457, 1801, 3049, 3529, 4057, 8209, 10369, 19609, 20809, 33289, 41521, 51217, 84121, 103969, 111409, 115201, 121081, 129049, 141529, 150169, 155689, 180097, 223129, 282769, 308929, 342841, 397849, 426889, 432457, 627217, 649801, 658969, 710449, 729649
Offset: 1

Views

Author

K. D. Bajpai, Jul 07 2013

Keywords

Examples

			a(1) = 5^2 + 7^2 - 1 = 73, which is prime.
		

Crossrefs

Cf. A072669.

Programs

  • Maple
    K := proc(x) local a; a:=ithprime(x)^2+ithprime(x+1)^2-1; if (isprime(a))then RETURN (a) fi: end: seq(K(x), x=1..500); # K. D. Bajpai, Jul 07 2013
    K:=proc()local x,a,c; c:=1; for x from 1 to 5000 do; a:=ithprime(x)^2+ithprime(x+1)^2-1;if isprime(a) then lprint(c,a);c:=c+1;fi;od; end: K(); # K. D. Bajpai, Jul 07 2013
  • Mathematica
    t = {}; Do[p = Prime[n]; q = Prime[n + 1]; p2 = p^2 + q^2 - 1; If[PrimeQ[p2], AppendTo[t, p2]], {n, 200}]; t (* T. D. Noe, Jul 09 2013 *)
  • PARI
    is(n)=if(isprime(n), my(x=sqrtint((n+1)\2)); nextprime(x+1)^2 +precprime(x)^2==n+1 && n>3, 0) \\ Charles R Greathouse IV, Jul 08 2013
    
  • PARI
    p=2;forprime(q=3,1e5,if(isprime(t=p^2+q^2-1),print1(t", "));p=q) \\ Charles R Greathouse IV, Jul 08 2013