Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 2, 2, 1, 1, 1, 3, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 1, 2, 2, 2, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 2, 2, 2, 1, 2, 1, 1, 2, 1, 1, 1, 1, 3, 1, 2, 1, 1, 1, 1, 1
Offset: 0
Original entry on oeis.org
1, 1, 1, 2, 2, 1, 2, 3, 3, 2, 1, 2, 2, 2, 3, 4, 4, 3, 2, 2, 2, 1, 2, 3, 6, 2, 2, 4, 6, 3, 4, 5, 5, 4, 3, 6, 4, 2, 2, 6, 3, 2, 1, 2, 2, 2, 3, 4, 4, 6, 2, 4, 2, 2, 4, 6, 3, 6, 3, 6, 4, 4, 5, 6, 6, 5, 4, 4, 6, 3, 6, 3, 6, 4, 2, 2, 4, 2, 6, 4, 4, 3, 2, 2, 2, 1, 2, 3, 6, 2, 2, 4, 6, 3, 4, 5, 10, 4, 6, 12, 4, 2, 4, 6, 6, 2, 2, 4, 4, 4, 6, 8, 12, 3, 6, 6, 6, 3, 6
Offset: 0
A227349
Product of lengths of runs of 1-bits in binary representation of n.
Original entry on oeis.org
1, 1, 1, 2, 1, 1, 2, 3, 1, 1, 1, 2, 2, 2, 3, 4, 1, 1, 1, 2, 1, 1, 2, 3, 2, 2, 2, 4, 3, 3, 4, 5, 1, 1, 1, 2, 1, 1, 2, 3, 1, 1, 1, 2, 2, 2, 3, 4, 2, 2, 2, 4, 2, 2, 4, 6, 3, 3, 3, 6, 4, 4, 5, 6, 1, 1, 1, 2, 1, 1, 2, 3, 1, 1, 1, 2, 2, 2, 3, 4, 1, 1, 1, 2, 1, 1, 2, 3, 2, 2, 2, 4, 3, 3, 4, 5, 2, 2, 2, 4, 2, 2, 4, 6, 2, 2, 2, 4, 4, 4, 6, 8, 3, 3, 3, 6, 3, 3, 6, 9, 4
Offset: 0
a(0) = 1, as zero has no runs of 1's, and an empty product is 1.
a(1) = 1, as 1 is "1" in binary, and the length of that only 1-run is 1.
a(2) = 1, as 2 is "10" in binary, and again there is only one run of 1-bits, of length 1.
a(3) = 2, as 3 is "11" in binary, and there is one run of two 1-bits.
a(55) = 6, as 55 is "110111" in binary, and 2 * 3 = 6.
a(119) = 9, as 119 is "1110111" in binary, and 3 * 3 = 9.
From _Omar E. Pol_, Feb 10 2015: (Start)
Written as an irregular triangle in which row lengths is A011782:
1;
1;
1,2;
1,1,2,3;
1,1,1,2,2,2,3,4;
1,1,1,2,1,1,2,3,2,2,2,4,3,3,4,5;
1,1,1,2,1,1,2,3,1,1,1,2,2,2,3,4,2,2,2,4,2,2,4,6,3,3,3,6,4,4,5,6;
...
Right border gives A028310: 1 together with the positive integers. (End)
From _Omar E. Pol_, Mar 19 2015: (Start)
Also, the sequence can be written as an irregular tetrahedron T(s, r, k) as shown below:
1;
..
1;
..
1;
2;
....
1,1;
2;
3;
........
1,1,1,2;
2,2;
3;
4;
................
1,1,1,2,1,1,2,3;
2,2,2,4;
3,3;
4;
5;
................................
1,1,1,2,1,1,2,3,1,1,1,2,2,2,3,4;
2,2,2,4,2,2,4,6;
3,3,3,6;
4,4;
5;
6;
...
Apart from the initial 1, we have that T(s, r, k) = T(s+1, r, k). (End)
Cf.
A000120 (sum of lengths of runs of 1-bits),
A167489,
A227350,
A227193,
A278222,
A245562,
A284562,
A284569,
A283972,
A284582,
A284583.
Differs from similar
A284580 for the first time at n=119, where a(119) = 9, while
A284580(119) = 5.
-
a:= proc(n) local i, m, r; m, r:= n, 1;
while m>0 do
while irem(m, 2, 'h')=0 do m:=h od;
for i from 0 while irem(m, 2, 'h')=1 do m:=h od;
r:= r*i
od; r
end:
seq(a(n), n=0..100); # Alois P. Heinz, Jul 11 2013
ans:=[];
for n from 0 to 100 do lis:=[]; t1:=convert(n, base, 2); L1:=nops(t1); out1:=1; c:=0;
for i from 1 to L1 do
if out1 = 1 and t1[i] = 1 then out1:=0; c:=c+1;
elif out1 = 0 and t1[i] = 1 then c:=c+1;
elif out1 = 1 and t1[i] = 0 then c:=c;
elif out1 = 0 and t1[i] = 0 then lis:=[c, op(lis)]; out1:=1; c:=0;
fi;
if i = L1 and c>0 then lis:=[c, op(lis)]; fi;
od:
a:=mul(i, i in lis);
ans:=[op(ans), a];
od:
ans; # N. J. A. Sloane, Sep 05 2014
-
onBitRunLenProd[n_] := Times @@ Length /@ Select[Split @ IntegerDigits[n, 2], #[[1]] == 1 & ]; Array[onBitRunLenProd, 100, 0] (* Jean-François Alcover, Mar 02 2016 *)
-
from operator import mul
from functools import reduce
from re import split
def A227349(n):
return reduce(mul, (len(d) for d in split('0+',bin(n)[2:]) if d)) if n > 0 else 1 # Chai Wah Wu, Sep 07 2014
-
# uses[RLT from A246660]
A227349_list = lambda len: RLT(lambda n: n, len)
A227349_list(88) # Peter Luschny, Sep 07 2014
-
(define (A227349 n) (apply * (bisect (reverse (binexp->runcount1list n)) (- 1 (modulo n 2)))))
(define (bisect lista parity) (let loop ((lista lista) (i 0) (z (list))) (cond ((null? lista) (reverse! z)) ((eq? i parity) (loop (cdr lista) (modulo (1+ i) 2) (cons (car lista) z))) (else (loop (cdr lista) (modulo (1+ i) 2) z)))))
(define (binexp->runcount1list n) (if (zero? n) (list) (let loop ((n n) (rc (list)) (count 0) (prev-bit (modulo n 2))) (if (zero? n) (cons count rc) (if (eq? (modulo n 2) prev-bit) (loop (floor->exact (/ n 2)) rc (1+ count) (modulo n 2)) (loop (floor->exact (/ n 2)) (cons count rc) 1 (modulo n 2)))))))
A167489
Product of run lengths in binary representation of n.
Original entry on oeis.org
1, 1, 1, 2, 2, 1, 2, 3, 3, 2, 1, 2, 4, 2, 3, 4, 4, 3, 2, 4, 2, 1, 2, 3, 6, 4, 2, 4, 6, 3, 4, 5, 5, 4, 3, 6, 4, 2, 4, 6, 3, 2, 1, 2, 4, 2, 3, 4, 8, 6, 4, 8, 4, 2, 4, 6, 9, 6, 3, 6, 8, 4, 5, 6, 6, 5, 4, 8, 6, 3, 6, 9, 6, 4, 2, 4, 8, 4, 6, 8, 4, 3, 2, 4, 2, 1, 2, 3, 6, 4, 2, 4, 6, 3, 4, 5, 10, 8, 6, 12, 8, 4, 8
Offset: 0
a(56) = 9, because 56 in binary is written 111000 giving the run lengths 3,3 and 3x3 = 9.
a(99) = 12, because 99 in binary is written 1100011 giving the run lengths 2,3,2, and 2x3x2 = 12.
Cf.
A167490 (smallest number with binary run length product = n).
Differs from similar
A284579 for the first time at n=56, where a(56) = 9, while
A284579(56) = 5.
-
import Data.List (group)
a167489 = product . map length . group . a030308_row
-- Reinhard Zumkeller, Jul 05 2013
-
Table[ Times @@ (Length /@ Split[IntegerDigits[n, 2]]), {n, 0, 100}](* Olivier Gérard, Jul 05 2013 *)
-
a(n) = {my(p=1, b=n%2, i=0); while(n!=0, n=n>>1; i=i+1; if((n%2)!=b, p=p*i; i=0; b=n%2)); p} \\ Indranil Ghosh, Apr 17 2017, after the Python Program by Antti Karttunen
-
def A167489(n):
'''Product of run lengths in binary representation of n.'''
p = 1
b = n%2
i = 0
while (n != 0):
n >>= 1
i += 1
if ((n%2) != b):
p *= i
i = 0
b = n%2
return(p)
# Antti Karttunen, Jul 24 2013 (Cf. Python program for A227184).
-
(define (A167489 n) (apply * (binexp->runcount1list n)))
(define (binexp->runcount1list n) (if (zero? n) (list) (let loop ((n n) (rc (list)) (count 0) (prev-bit (modulo n 2))) (if (zero? n) (cons count rc) (if (eq? (modulo n 2) prev-bit) (loop (floor->exact (/ n 2)) rc (1+ count) (modulo n 2)) (loop (floor->exact (/ n 2)) (cons count rc) 1 (modulo n 2)))))))
;; Antti Karttunen, Jul 05 2013
A227355
Product of run lengths in Zeckendorf representation of n.
Original entry on oeis.org
1, 1, 1, 2, 1, 3, 2, 1, 4, 3, 2, 2, 1, 5, 4, 3, 4, 2, 3, 2, 1, 6, 5, 4, 6, 3, 6, 4, 2, 4, 3, 2, 2, 1, 7, 6, 5, 8, 4, 9, 6, 3, 8, 6, 4, 4, 2, 5, 4, 3, 4, 2, 3, 2, 1, 8, 7, 6, 10, 5, 12, 8, 4, 12, 9, 6, 6, 3, 10, 8, 6, 8, 4, 6, 4, 2, 6, 5, 4, 6, 3, 6, 4, 2, 4, 3
Offset: 0
A227193
Difference of (product of runlengths of 1-bits) and (product of runlengths of 0-bits) in binary representation of n.
Original entry on oeis.org
0, 0, 0, 1, -1, 0, 1, 2, -2, -1, 0, 1, 0, 1, 2, 3, -3, -2, -1, 0, -1, 0, 1, 2, -1, 0, 1, 3, 1, 2, 3, 4, -4, -3, -2, -1, -3, -1, 0, 1, -2, -1, 0, 1, 0, 1, 2, 3, -2, -1, 0, 2, 0, 1, 3, 5, 0, 1, 2, 5, 2, 3, 4, 5, -5, -4, -3, -2, -5, -2, -1, 0, -5, -3, -1, 0, -2, 0
Offset: 0
-
a:= proc(n) local i, j, m, r, s; m, r, s:= n, 1, 1;
while m>0 do
for i from 0 while irem(m, 2, 'h')=0 do m:=h od;
for j from 0 while irem(m, 2, 'h')=1 do m:=h od;
r, s:= r*j, s*max(i, 1)
od; r-s
end:
seq(a(n), n=0..100); # Alois P. Heinz, Jul 11 2013
-
a[n_] := With[{s = Split @ IntegerDigits[n, 2]}, Times @@ Length /@ Select[ s, First[#]==1&] - Times @@ Length /@ Select[s , First[#]==0&]]; Table[ a[n], {n, 0, 100}] (* Jean-François Alcover, Feb 28 2016 *)
-
(define (A227193 n) (- (A227349 n) (A227350 n)))
Showing 1-6 of 6 results.
Comments