A227428 Number of twos in row n of triangle A083093.
0, 0, 1, 0, 0, 2, 1, 2, 4, 0, 0, 2, 0, 0, 4, 2, 4, 8, 1, 2, 4, 2, 4, 8, 4, 8, 13, 0, 0, 2, 0, 0, 4, 2, 4, 8, 0, 0, 4, 0, 0, 8, 4, 8, 16, 2, 4, 8, 4, 8, 16, 8, 16, 26, 1, 2, 4, 2, 4, 8, 4, 8, 13, 2, 4, 8, 4, 8, 16, 8, 16, 26, 4, 8, 13, 8, 16, 26, 13, 26, 40
Offset: 0
Keywords
Examples
Example of Wilson's formula: a(26) = 13 = 2^(0-1)*(3^3-1) = 26/2, where A062756(26)=0, A081603(26)=3, 26=(222)_3. - _R. J. Mathar_, Jul 26 2017
Links
- Reinhard Zumkeller (terms 0..1000) & Antti Karttunen, Table of n, a(n) for n = 0..19683
- R. Garfield and H. S. Wilf, The distribution of the binomial coefficients modulo p, J. Numb. Theory 41 (1) (1992) 1-5.
- Marcus Jaiclin, et al. Pascal's Triangle, Mod 2,3,5
- D. L. Wells, Residue counts modulo three for the fibonacci triangle, Appl. Fib. Numbers, Proc. 6th Int Conf Fib. Numbers, Pullman, 1994 (1996) 521-536.
- Avery Wilson, Pascal's Triangle Modulo 3, Mathematics Spectrum, 47-2 - January 2015, pp. 72-75.
- S. Wolfram, Geometry of binomial coefficients, Am. Math. Monthly 91 (9) (1984) 566-571.
Programs
-
Haskell
a227428 = sum . map (flip div 2) . a083093_row
-
Maple
A227428 := proc(n) local a; a := 0 ; for k from 0 to n do if A083093(n,k) = 2 then a := a+1 ; end if; end do: a ; end proc: seq(A227428(n),n=0..20) ; # R. J. Mathar, Jul 26 2017
-
Mathematica
Table[Count[Mod[Binomial[n, Range[0, n]], 3], 2], {n, 0, 99}] (* Alonso del Arte, Feb 07 2012 *)
-
PARI
A227428(n) = sum(k=0,n,2==(binomial(n,k)%3)); \\ (Naive implementation, from the description) Antti Karttunen, Jul 26 2017
-
Python
from sympy import binomial def a(n): return sum(1 for k in range(n + 1) if binomial(n, k) % 3 == 2) print([a(n) for n in range(101)]) # Indranil Ghosh, Jul 26 2017
-
Python
from sympy.ntheory import digits def A227428(n): s = digits(n,3)[1:] return 3**s.count(2)-1<
>1 # Chai Wah Wu, Jul 24 2025 -
Scheme
(define (A227428 n) (* (A000079 (- (A062756 n) 1)) (+ -1 (A000244 (A081603 n))))) ;; After Wilson's direct formula, Antti Karttunen, Jul 26 2017
Formula
a(n) = 2^(N_1-1)*(3^N_2-1) where N_1 = A062756(n), N_2 = A081603(n). [Wilson, Theorem 2, Wells] - R. J. Mathar, Jul 26 2017
a(n) = (1/2)*Sum_{k = 0..n} mod(C(n,k)^2 - C(n,k), 3). - Peter Bala, Dec 17 2020
Comments