A227430 Expansion of x^2*(1-x)^3/((1-2*x)*(1-x+x^2)*(1-3*x+3x^2)).
0, 0, 1, 3, 6, 10, 15, 21, 29, 45, 90, 220, 561, 1365, 3095, 6555, 13110, 25126, 46971, 87381, 164921, 320001, 640002, 1309528, 2707629, 5592405, 11450531, 23166783, 46333566, 91869970, 181348455, 357913941, 708653429, 1410132405, 2820264810, 5662052980
Offset: 0
Examples
a(6)=6*10-15*6+20*3-15*1+6*0=15, a(7)=90-150+120-45+6=21.
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..3000
- Index entries for linear recurrences with constant coefficients, signature (6,-15,20,-15,6).
Programs
-
Mathematica
Join[{0},LinearRecurrence[{6,-15,20,-15,6},{0,1,3,6,10},40]] (* Harvey P. Dale, Dec 17 2014 *)
-
PARI
{a(n) = sum(k=0, n\6, binomial(n, 6*k+2))} \\ Seiichi Manyama, Mar 23 2019
Formula
a(n) = 6*a(n-1) -15*a(n-2) +20*a(n-3) -15*a(n-4) +6*a(n-5) for n>5, a(0)=a(1)=0, a(2)=1, a(3)=3, a(4)=6, a(5)=10.
G.f.: -(x^5 - 3*x^4 + 3*x^3 - x^2)/((1-2*x)*(1-x+x^2)*(1-3*x+3*x^2)). - Ralf Stephan, Jul 13 2013
a(n) = Sum_{k=0..floor(n/6)} binomial(n,6*k+2). - Seiichi Manyama, Mar 23 2019
Extensions
Definition uses the g.f. of Ralf Stephan.
More terms from Harvey P. Dale, Dec 17 2014
Comments