A227431 Fibonacci differences triangle, T(n,k), k<=n, where column k holds the k-th difference of A000045, read by rows.
1, 1, 0, 2, 1, 1, 3, 1, 0, -1, 5, 2, 1, 1, 2, 8, 3, 1, 0, -1, -3, 13, 5, 2, 1, 1, 2, 5, 21, 8, 3, 1, 0, -1, -3, -8, 34, 13, 5, 2, 1, 1, 2, 5, 13, 55, 21, 8, 3, 1, 0, -1, -3, -8, -21, 89, 34, 13, 5, 2, 1, 1, 2, 5, 13, 34, 144, 55, 21, 8, 3, 1, 0, -1, -3, -8, -21
Offset: 1
Examples
1 1 0 2 1 1 3 1 0 -1 5 2 1 1 2 8 3 1 0 -1 -3 13 5 2 1 1 2 5 21 8 3 1 0 -1 -3 -8 34 13 5 2 1 1 2 5 13 55 21 8 3 1 0 -1 -3 -8 -21 89 34 13 5 2 1 1 2 5 13 34
Links
- T. D. Noe, Rows n = 1..100 of triangle, flattened
Programs
-
Haskell
a227431 n k = a227431_tabl !! (n-1) !! (k-1) a227431_row n = a227431_tabl !! (n-1) a227431_tabl = h [] 0 1 where h row u v = row' : h row' v (u + v) where row' = scanl (-) v row -- Reinhard Zumkeller, Jul 28 2013
-
Mathematica
Flatten[Table[Fibonacci[Range[n, -n + 1, -2]], {n, 15}]] (* T. D. Noe, Jul 26 2013 *)
-
PARI
T(n,k)=fibonacci(n-2*k+2) \\ Charles R Greathouse IV, Jul 30 2016
Formula
T(n,1) = F(n) for n > 0, where F(n) = A000045(n), T(n,k) = T(n,k-1) - T(n-1,k-1).
Comments