A267503 Primes p such that p-1 is squarefree and all prime divisors of p-1 other than 5 are also in the sequence.
2, 3, 7, 11, 23, 31, 43, 47, 67, 71, 139, 211, 283, 311, 331, 431, 463, 659, 683, 691, 863, 947, 967, 1291, 1303, 1319, 1367, 1427, 1699, 1867, 1979, 1987, 2011, 2111, 2131, 2311, 2531, 3011, 3083, 4099, 4423, 4643, 4691, 4831, 5171, 5179, 5683, 5839, 6299, 6911, 7283, 7591, 8563, 8863, 9227, 9871, 9931, 10343, 10627, 11887, 11923, 12911
Offset: 1
Keywords
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
N:= 20000: # to get all terms <= N Res:= 2: Agenda:= {3,11}: P:= {2,10}: g:= proc(t) local s; s:= p*t; if s < N then s else NULL fi end proc: while Agenda <> {} do p:= min(Agenda); Res:= Res, p; newP:= map(g , P); P:= P union newP; Agenda:= Agenda minus {p} union select(isprime, map(`+`,newP,1)); od: Res; # Robert Israel, Mar 15 2019
-
Mathematica
fa = FactorInteger; is[2, p_] = True; is[2, p_]; is[n_, p_] := PrimeQ[n] && MoebiusMu[n - 1] ≠ 0 && Union@Table[is[fa[n - 1][[i, 1]], p] || fa[n - 1][[ i, 1]] == p , {i, Length[fa[n - 1]]}] == {True}; Select[Prime[Range[10000]], is[#, 5] &]
Comments