cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A267503 Primes p such that p-1 is squarefree and all prime divisors of p-1 other than 5 are also in the sequence.

Original entry on oeis.org

2, 3, 7, 11, 23, 31, 43, 47, 67, 71, 139, 211, 283, 311, 331, 431, 463, 659, 683, 691, 863, 947, 967, 1291, 1303, 1319, 1367, 1427, 1699, 1867, 1979, 1987, 2011, 2111, 2131, 2311, 2531, 3011, 3083, 4099, 4423, 4643, 4691, 4831, 5171, 5179, 5683, 5839, 6299, 6911, 7283, 7591, 8563, 8863, 9227, 9871, 9931, 10343, 10627, 11887, 11923, 12911
Offset: 1

Views

Author

Keywords

Comments

Is this sequence infinite?

Crossrefs

Programs

  • Maple
    N:= 20000: # to get all terms <= N
    Res:= 2:
    Agenda:= {3,11}:
    P:= {2,10}:
    g:= proc(t) local s; s:=  p*t; if s < N then s else NULL fi end proc:
    while Agenda <> {} do
      p:= min(Agenda);
      Res:= Res, p;
      newP:= map(g , P);
      P:= P union newP;
      Agenda:= Agenda minus {p} union select(isprime, map(`+`,newP,1));
    od:
    Res; # Robert Israel, Mar 15 2019
  • Mathematica
    fa = FactorInteger; is[2, p_] = True; is[2, p_];
    is[n_, p_] := PrimeQ[n] &&  MoebiusMu[n - 1] ≠ 0 && Union@Table[is[fa[n - 1][[i, 1]], p] || fa[n - 1][[ i, 1]] == p , {i, Length[fa[n - 1]]}] == {True}; Select[Prime[Range[10000]], is[#, 5] &]

A267505 Primes p such that p-1 is squarefree and all prime divisors of p-1 other than 13 are also in the sequence.

Original entry on oeis.org

2, 3, 7, 43, 79, 547, 3319, 6163, 36979, 42667, 258847, 1553119, 1573207, 1834639, 1854763, 11131927, 20224159, 20451679, 124027567, 141569107, 141588763, 467477683, 1840398379, 3278780359, 5276533183, 6089163523, 6155955079, 11168428363, 11185512199, 31655671459
Offset: 1

Views

Author

Keywords

Comments

Is this sequence infinite?

Crossrefs

Programs

  • Mathematica
    fa = FactorInteger; is[2, p_] = True; is[2, p_];
    is[n_, p_] := PrimeQ[n] &&  MoebiusMu[n - 1] ≠ 0 && Union@Table[is[fa[n - 1][[i, 1]], p] || fa[n - 1][[ i, 1]] == p , {i, Length[fa[n - 1]]}] == {True}; Select[Prime[Range[100000]], is[#, 13] &]
  • PARI
    leastdiv(v, pred, inf)={ \\ finds least divisor d satisfying pred(d) && d>=inf
      my(recurse(k,d,lim)= if(d >= lim, lim, if(d>=inf && pred(d), d, k++; if(k<=#v, lim=self()(k, d*v[k], lim); self()(k, d, lim), lim))));
      my(stop=vecprod(v), lim=inf, m=4);
      while(lim<=stop, lim*=m; my(d=recurse(0,1,lim)); if(disprime(d+1), S[#S]); if(t==oo, break); t++; print1(t, ", "))} \\ Andrew Howroyd, Nov 13 2018

Extensions

Terms a(16) and beyond from Andrew Howroyd, Nov 13 2018

A267507 Prime numbers n such that n-1 is squarefree and all prime divisors of n-1 other than 19 are in the sequence.

Original entry on oeis.org

2, 3, 7, 43, 4903, 168241543, 5773040306503
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    S[1] = {2, 19}; PR[S_] := Product[S[[i]], {i, Length[S]}];
    S[m_] := S[m] =  Union[S[m - 1], Select[Table[PR[Subsets[S[m - 1]] [[i]]] + 1, {i, 2^Length[S[m - 1]]}], PrimeQ]]; A267507 = Complement[S[7], {19}]
    (* S[7]=S[8] ==> sequence is finite and full; José María Grau Ribas, Nov 22 2021 *)

A267506 Primes p such that p-1 is squarefree and all prime divisors of p-1 other than 17 are also in the sequence.

Original entry on oeis.org

2, 3, 7, 43, 103, 239, 479, 619, 3347, 4327, 10039, 24379, 25999, 30703, 48859, 123583, 143879, 147703, 150587, 170647, 186019, 288359, 344639, 421639, 593003, 689279, 690719, 1029827, 1381439, 1779007, 2651899, 3089479, 3558019, 4242983
Offset: 1

Views

Author

Keywords

Comments

Is this sequence infinite?

Crossrefs

Programs

  • Mathematica
    fa = FactorInteger; is[2, p_] = True; is[2, p_];
    is[n_, p_] := PrimeQ[n] &&  MoebiusMu[n - 1] ≠ 0 && Union@Table[is[fa[n - 1][[i, 1]], p] || fa[n - 1][[ i, 1]] == p , {i, Length[fa[n - 1]]}] == {True}; Select[Prime[Range[10000]], is[#, 17] &]
Showing 1-4 of 4 results.