cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A227848 Numbers n such that Sum_{i=1..n} (i')^i == 0 (mod n), where i' is the arithmetic derivative of i.

Original entry on oeis.org

1, 9, 71, 120, 331, 393, 728, 1223, 3697, 4123, 6791, 7391, 23911, 25099, 35287, 86442, 86716, 118034, 292411, 352970, 527255, 606425
Offset: 1

Views

Author

Paolo P. Lava, Aug 01 2013

Keywords

Comments

a(19) > 200000. - Giovanni Resta, Aug 01 2013

Examples

			1'^1 + 2'^2 + 3'^3 + 4'^4 + 5'^5 + 6'^6 + 7'^7 + 8'^8 + 9'^9 = 0^1 + 1^2 + 1^3 + 4^4 + 1^5 + 5^6 + 1^7 + 12^8 + 6^9 = 440075277 and 440075277 / 9 = 48897253.
		

Crossrefs

Programs

  • Maple
    with(numtheory); ListA227848:=proc(q) local a, n, p;  a:=0;
    for n from 1 to q do a:=a+(n*add(op(2, p)/op(1, p), p=ifactors(n)[2]))^n;
    if a mod n=0 then print(n); fi; od; end: ListA227848(10^6);
  • Mathematica
    d[n_] := d[n] = n* Total[Apply[#2/#1 &, FactorInteger[n], {1}]]; Reap[For[n = 1, n <= 2*10^5, n++, If[Mod[Sum[d[k]^k, {k, 1, n}], n] == 0, Print[n]; Sow[n]]]][[2, 1]] (* Jean-François Alcover, Feb 21 2014 *)

Extensions

a(16)-a(18) from Giovanni Resta, Aug 01 2013
a(19)-a(22) from Bert Dobbelaere, Dec 23 2018

A229095 Numbers k such that Sum_{i=1..k} i^tau(i) == 0 (mod k), where tau(i) = A000005(i), the number of divisors of i.

Original entry on oeis.org

1, 8, 9, 67, 72, 467, 801, 1071, 5141, 7193, 25688, 68488, 97768, 111816, 381061, 7829505, 17079937, 25615576, 44582211, 91110856, 639359784, 3492789629
Offset: 1

Views

Author

Paolo P. Lava, Sep 13 2013

Keywords

Examples

			1^tau(1) + 2^tau(2) + ... + 8^tau(8) + 9^tau(9) = 1^1 + 2^2 + 3^2 + 4^3 + 5^2 + 6^4 + 7^2 + 8^4 + 9^3 = 6273 and 6273 / 9 = 697.
		

Crossrefs

Programs

  • Maple
    with(numtheory); P:=proc(q) local n, t; t:=0;
    for n from 1 to q do t:=t+n^tau(n); if t mod n=0 then print(n);
    fi; od; end: P(10^6);
  • PARI
    list(lim) = {my(s = 0, f); for(k = 1, lim, s += k^numdiv(k); if(!(s % k), print1(k, ", ")));} \\ Amiram Eldar, Dec 29 2024

Extensions

a(16)-a(18) from Jinyuan Wang, Feb 18 2021
a(19)-a(22) from Amiram Eldar, Dec 29 2024

A229207 Numbers k such that Sum_{j=1..k} tau(j)^j == 0 (mod k), where tau(j) = A000005(j), the number of divisors of j.

Original entry on oeis.org

1, 46, 135, 600, 1165, 1649, 5733, 6788, 6828, 9734, 29686, 363141, 1542049
Offset: 1

Views

Author

Paolo P. Lava, Sep 16 2013

Keywords

Comments

a(12) > 200000. - Michel Marcus, Feb 25 2016
a(13) > 500000. - Harvey P. Dale, Dec 13 2018
a(14) > 3000000. - Jason Yuen, Feb 27 2024

Examples

			tau(1)^1 + tau(2)^2 + ... + tau(45)^45 + tau(46)^46 = 1^1 + 2^2 + ... + 6^45 + 4^46 = 86543618042218910328339719795268200166 and 86543618042218910328339719795268200166 / 46 = 1881383000917802398442167821636265221.
		

Crossrefs

Programs

  • Maple
    with(numtheory); P:=proc(q) local n, t; t:=0;
    for n from 1 to q do t:=t+tau(n)^n; if t mod n=0 then print(n);
    fi; od; end: P(10^6);
  • Mathematica
    Module[{nn=30000,ac},ac=Accumulate[Table[DivisorSigma[0,i]^i,{i,nn}]];Select[ Thread[{ac,Range[nn]}],Divisible[#[[1]],#[[2]]]&]][[All,2]](* Harvey P. Dale, Dec 13 2018 *)
  • PARI
    isok(n) = sum(i=1, n, Mod(numdiv(i), n)^i) == 0; \\ Michel Marcus, Feb 25 2016

Extensions

a(12) added by Harvey P. Dale, Dec 13 2018
a(13) added by Jason Yuen, Feb 27 2024

A229211 Numbers k such that Sum_{j=1..k} (j*(j+1)/2 - sigma(j))^j == 0 (mod k), where sigma(j) = A000203(j) and j*(j+1)/2 - sigma(j) = A024816(j).

Original entry on oeis.org

1, 2, 9, 78, 3205, 5589, 14153, 246123
Offset: 1

Views

Author

Paolo P. Lava, Sep 16 2013

Keywords

Comments

Tested up to k = 50000.

Examples

			(1*2 / 2 - sigma(1))^1 + (2*3 / 2 - sigma(2))^2 + ... + (9*10 / 2 - sigma(10))^9 = 35223475538772 and 35223475538772 / 9 = 3913719504308.
		

Crossrefs

Programs

  • Maple
    with(numtheory); P:=proc(q) local n, t; t:=0;
    for n from 1 to q do t:=t+(n*(n+1)/2-sigma(n))^n; if t mod n=0 then print(n); fi; od; end: P(10^6);
  • PARI
    isok(n) = sum(i=1, n, (i*(i+1)/2 - sigma(i))^i) % n == 0; \\ Michel Marcus, Nov 09 2014

Extensions

Typo in name and crossref corrected by Michel Marcus, Nov 09 2014
a(8) from Kevin P. Thompson, Apr 20 2022

A229209 Numbers k such that Sum_{j=1..k} phi(j)^j == 0 (mod k).

Original entry on oeis.org

1, 2, 5, 7, 11, 39, 126, 266, 683, 2514, 12929
Offset: 1

Views

Author

Paolo P. Lava, Sep 16 2013

Keywords

Comments

Tested up to k = 600000. - Jinyuan Wang, Feb 19 2021

Examples

			phi(1)^1 + phi(2)^2 + phi(3)^3 + phi(4)^4 + phi(5)^5 = 1^1 + 1^2 + 2^3 + 2^4 + 4^5 = 1050 and 1050/5 = 210.
		

Crossrefs

Programs

  • Maple
    with(numtheory); P:=proc(q) local n, t; t:=0;
    for n from 1 to q do t:=t+phi(n)^n; if t mod n=0 then print(n);
    fi; od; end: P(10^6);
  • PARI
    is(k) = sum(i=1, k, Mod(eulerphi(i), k)^i) == 0; \\ Jinyuan Wang, Feb 19 2021

A229210 Numbers k such that Sum_{i=1..k} (i-tau(i))^i == 0 (mod k), where tau(i) = A000005(i), the number of divisors of i, and i-tau(i) = A049820(i).

Original entry on oeis.org

1, 2, 5, 24, 36, 371, 445, 1578, 3616, 9292, 38123, 142815, 184097
Offset: 1

Views

Author

Paolo P. Lava, Sep 16 2013

Keywords

Comments

a(12) > 50000.
a(14) > 200000. - Michel Marcus, Feb 25 2016

Examples

			(1 - tau(1))^1 + (2 - tau(2))^2 + ... + (5 - tau(5))^5 = 245 and 245 / 5 = 49.
		

Crossrefs

Programs

  • Maple
    with(numtheory); P:=proc(q) local n, t; t:=0;
    for n from 1 to q do t:=t+(n-tau(n))^n; if t mod n=0 then print(n);
    fi; od; end: P(10^6);
  • PARI
    isok(n) = sum(i=1, n, Mod(i-numdiv(i), n)^i) == 0; \\ Michel Marcus, Feb 25 2016

Extensions

Name corrected by Michel Marcus, Feb 25 2016
a(12)-a(13) from Michel Marcus, Feb 25 2016

A229208 Numbers k such that Sum_{j=1..k} sigma(j)^j == 0 (mod k).

Original entry on oeis.org

1, 2, 9, 55, 758, 16685, 29224, 84293, 87018, 98122
Offset: 1

Views

Author

Paolo P. Lava, Sep 16 2013

Keywords

Comments

a(8) > 50000.
a(11) > 10^5. - Hiroaki Yamanouchi, Sep 23 2014

Examples

			sigma(1)^1 + sigma(2)^2 + ... + sigma(9)^9 = 13172483385 and 13172483385 / 9 = 1463609265.
		

Crossrefs

Programs

  • Maple
    with(numtheory); P:=proc(q) local n, t; t:=0;
    for n from 1 to q do t:=t+sigma(n)^n; if t mod n=0 then print(n);
    fi; od; end: P(10^6);
  • Mathematica
    Module[{nn=100000},Select[Thread[{Accumulate[Table[DivisorSigma[1,n]^n,{n,nn}]],Range[nn]}],Divisible[#[[1]],#[[2]]]&]][[All,2]] (* Harvey P. Dale, Dec 06 2018 *)
  • PARI
    lista(nn) = {v = vector(nn, i, sigma(i)); for (n=1, nn, if (! sum(i=1, n, Mod(v[i], n)^i), print1(n, ", ");););} \\ Michel Marcus, Sep 21 2013

Extensions

a(8)-a(10) from Hiroaki Yamanouchi, Sep 23 2014

A260654 Numbers k such that Sum_{i=1..k} sigma(i)^d(i) == 0 (mod k), where sigma = A000203 and d = A000005.

Original entry on oeis.org

1, 2, 5, 56, 59, 60, 75, 122, 743, 2835, 3951, 5712, 6866, 7884, 14754, 18751, 292123, 465289, 1921892, 3902477, 7609760, 21855984, 22013406, 358753359, 570535294, 582046711, 1846338478, 13691385818
Offset: 1

Views

Author

Paolo P. Lava, Nov 13 2015

Keywords

Examples

			sigma(1)^tau(1) + sigma(2)^tau(2) + sigma(3)^tau(3) + sigma(4)^tau(4) + sigma(5)^tau(5) = 1^1 + 3^2 + 4^2 + 7^3 + 6^2 = 1 + 9 + 16 + 343 + 36 = 405 and 405 / 5 = 81.
		

Crossrefs

Programs

  • Maple
    with(numtheory): P:=proc(q) local a,n; a:=0;
    for n from 1 to q do a:=a+sigma(n)^tau(n);
    if a mod n=0 then print(n); fi; od; end: P(10^6);
  • PARI
    for(n=1, 1e4, if(sum(k=1, n, sigma(k)^numdiv(k))%n==0, print1(n", "))) \\ Altug Alkan, Nov 13 2015
    
  • PARI
    list(lim) = {my(s = 0, f); for(k = 1, lim, f = factor(k); s += sigma(f)^numdiv(f); if(!(s % k), print1(k, ", ")));} \\ Amiram Eldar, Dec 29 2024

Extensions

Incorrect terms removed by and more terms from Jinyuan Wang, Feb 18 2021
a(24)-a(28) from Amiram Eldar, Dec 29 2024
Showing 1-8 of 8 results.