cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A227529 Copeland-Erdős constant primes (concatenation of entries (digits) of A033308 is prime).

Original entry on oeis.org

2, 23, 2357, 23571113171
Offset: 1

Views

Author

Eric W. Weisstein, Jul 14 2013

Keywords

Comments

Primes obtained by taking consecutive decimal digits (starting with the first) of the Copeland-Erdős constant.
The next terms are too big to display: a(5) = 235711131...6917017097 (353 digits), a(6) = 235711131...1701709719 (355 digits), ...
See A227530 for an equivalent but more compact way of listing the terms, namely, by giving the number of digits of the constant A033308 that must be taken to get a prime. - M. F. Hasler, Apr 24 2017

Crossrefs

Cf. A227530 (number of decimal digits in the n-th Copeland-Erdős prime).
Cf. A033308 (Decimal expansion of Copeland-Erdős constant: concatenate primes).

A263959 Number of decimal digits in A069151(n).

Original entry on oeis.org

1, 2, 4, 355, 499, 1171, 1543, 5719
Offset: 1

Views

Author

Eric W. Weisstein, Oct 30 2015

Keywords

Comments

Subset of A227530 (Copeland-Erdős constant primes) corresponding to concatenation of a full (non-truncated) final prime.
a(9) > 459970. - Eric W. Weisstein (according to Mark Rodenkirch as of Nov 21 2015)

Crossrefs

Cf. A227529 (Copeland-Erdős constant primes).
Cf. A227530 (decimal digits in n-th Copeland-Erdős constant prime).

Programs

  • Mathematica
    Cases[FromDigits /@ Rest[FoldList[Join, {}, IntegerDigits[Prime[Range[10^3]]]]], p_?PrimeQ :> IntegerLength[p]]
  • PARI
    p=""; for(n=1, 1e4, p=concat(p, prime(n)); if(ispseudoprime( eval(p)), print1(#Str(p)", "))) \\ Altug Alkan, Oct 30 2015
Showing 1-2 of 2 results.