A227543 Triangle defined by g.f. A(x,q) such that: A(x,q) = 1 + x*A(q*x,q)*A(x,q), as read by terms k=0..n*(n-1)/2 in rows n>=0.
1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 3, 3, 2, 1, 1, 1, 4, 6, 7, 7, 5, 5, 3, 2, 1, 1, 1, 5, 10, 14, 17, 16, 16, 14, 11, 9, 7, 5, 3, 2, 1, 1, 1, 6, 15, 25, 35, 40, 43, 44, 40, 37, 32, 28, 22, 18, 13, 11, 7, 5, 3, 2, 1, 1, 1, 7, 21, 41, 65, 86, 102, 115, 118, 118, 113, 106, 96, 85, 73, 63, 53, 42, 34, 26, 20, 15, 11, 7, 5, 3, 2, 1, 1
Offset: 0
Examples
G.f.: A(x,q) = 1 + x*(1) + x^2*(1 + q) + x^3*(1 + 2*q + q^2 + q^3) + x^4*(1 + 3*q + 3*q^2 + 3*q^3 + 2*q^4 + q^5 + q^6) + x^5*(1 + 4*q + 6*q^2 + 7*q^3 + 7*q^4 + 5*q^5 + 5*q^6 + 3*q^7 + 2*q^8 + q^9 + q^10) + x^6*(1 + 5*q + 10*q^2 + 14*q^3 + 17*q^4 + 16*q^5 + 16*q^6 + 14*q^7 + 11*q^8 + 9*q^9 + 7*q^10 + 5*q^11 + 3*q^12 + 2*q^13 + q^14 + q^15) +... where g.f.A(x,q) = Sum_{k=0..n*(n-1)/2, n>=0} T(n,k)*x^n*q^k satisfies A(x,q) = 1 + x*A(q*x,q)*A(x,q). This triangle of coefficients T(n,k) in A(x,q) begins: 1; 1; 1, 1; 1, 2, 1, 1; 1, 3, 3, 3, 2, 1, 1; 1, 4, 6, 7, 7, 5, 5, 3, 2, 1, 1; 1, 5, 10, 14, 17, 16, 16, 14, 11, 9, 7, 5, 3, 2, 1, 1; 1, 6, 15, 25, 35, 40, 43, 44, 40, 37, 32, 28, 22, 18, 13, 11, 7, 5, 3, 2, 1, 1; 1, 7, 21, 41, 65, 86, 102, 115, 118, 118, 113, 106, 96, 85, 73, 63, 53, 42, 34, 26, 20, 15, 11, 7, 5, 3, 2, 1, 1; 1, 8, 28, 63, 112, 167, 219, 268, 303, 326, 338, 338, 331, 314, 293, 268, 245, 215, 190, 162, 139, 116, 97, 77, 63, 48, 38, 28, 22, 15, 11, 7, 5, 3, 2, 1, 1; ...
Links
- Paul D. Hanna and Seiichi Manyama, Table of n, a(n) for n = 0..9919 (rows n=0..39 of triangle, flattened). (first 1351 terms from Paul D. Hanna)
- M. Archibald, A. Blecher, S. Elizalde, and A. Knopfmacher, Subdiagonal and superdiagonal partitions, Afr. Mat. 36, 77 (2025). See p. 4.
- Peter Bala, Illustration of triangular decomposition of area beneath Dyck paths
- Peter Bala, The area beneath small Schröder paths: Notes on A224704, A326453 and A326454, Section 4
- Luca Ferrari, Unimodality and Dyck paths, arXiv:1207.7295 [math.CO], 2012.
- FindStat - Combinatorial Statistic Finder, The bounce statistic of a Dyck path, The diagonal inversion statistic of a Dyck path, The area of a Dyck path.
- J. Haglund, Catalan Paths and q,t-Enumeration.
- Stéphane Ouvry and Alexios P. Polychronakos, Exclusion statistics for particles with a discrete spectrum, arXiv:2105.14042 [cond-mat.stat-mech], 2021.
- Hao Pan, A finite field approach to the Carlitz-Riordan q-Catalan numbers, Journal of Algebraic Combinatorics: An International Journal: Volume 56, Issue 4, Dec 2022, pp 1005-1009.
- Thomas Prellberg, Area-perimeter generating functions of lattice walks: q-series and their asymptotics, Slides, School of Mathematical Sciences, Queen Mary, University of London, July 1, 2009.
- Eric Weisstein's World of Mathematics, Rogers-Ramanujan Continued Fraction.
Programs
-
Mathematica
T[n_, k_] := Module[{P, Q}, P = Sum[q^(m^2) (-x)^m/Product[1-q^j, {j, 1, m}] + x O[x]^n, {m, 0, n}]; Q = Sum[q^(m(m-1)) (-x)^m/Product[1-q^j, {j, 1, m}] + x O[x]^n, {m, 0, n}]; SeriesCoefficient[P/Q, {x, 0, n}, {q, 0, k}] ]; Table[T[n, k], {n, 0, 10}, {k, 0, n(n-1)/2}] // Flatten (* Jean-François Alcover, Jul 27 2018, from PARI *)
-
PARI
/* From g.f. A(x,q) = 1 + x*A(q*x,q)*A(x,q): */ {T(n, k)=local(A=1); for(i=1, n, A=1+x*subst(A, x, q*x)*A +x*O(x^n)); polcoeff(polcoeff(A, n, x), k, q)} for(n=0, 10, for(k=0, n*(n-1)/2, print1(T(n, k), ", ")); print(""))
-
PARI
/* By Ramanujan's continued fraction identity: */ {T(n,k)=local(P=1,Q=1); P=sum(m=0,n,q^(m^2)*(-x)^m/prod(k=1,m,1-q^k)+x*O(x^n)); Q=sum(m=0,n,q^(m*(m-1))*(-x)^m/prod(k=1,m,1-q^k)+x*O(x^n)); polcoeff(polcoeff(P/Q,n,x),k,q)} for(n=0, 10, for(k=0, n*(n-1)/2, print1(T(n, k), ", ")); print(""))
-
PARI
P(x, n) = { if ( n<=1, return(1) ); return( sum( i=0, n-1, P(x, i) * P(x, n-1 -i) * x^((i+1)*(n-1 -i)) ) ); } for (n=0, 10, print( Vec( P(x, n) ) ) ); \\ Joerg Arndt, Jan 23 2024
-
PARI
\\ faster with memoization: N=11; VP=vector(N+1); VP[1] =VP[2] = 1; \\ one-based; memoization P(n) = VP[n+1]; for (n=2, N, VP[n+1] = sum( i=0, n-1, P(i) * P(n-1 -i) * x^((i+1)*(n-1-i)) ) ); for (n=0, N, print( Vec( P(n) ) ) ); \\ Joerg Arndt, Jan 23 2024
Formula
G.f.: A(x,q) = 1/(1 - x/(1 - q*x/(1 - q^2*x/(1 - q^3*x/(1 - q^4*x/(1 -...)))))), a continued fraction.
G.f. satisfies: A(x,q) = P(x,q)/Q(x,q), where
P(x,q) = Sum_{n>=0} q^(n^2) * (-x)^n / Product_{k=1..n} (1-q^k),
Q(x,q) = Sum_{n>=0} q^(n*(n-1)) * (-x)^n / Product_{k=1..n} (1-q^k),
due to Ramanujan's continued fraction identity.
...
Sum_{k=0..n*(n-1)/2} T(n,k)*k = 2^(2*n-1) - C(2*n+1,n) + C(2*n-1,n-1) = A006419(n-1) for n>=1.
Logarithmic derivative of the g.f. A(x,q), wrt x, yields triangle A227532.
From Peter Bala, Jul 11 2019: (Start)
(n+1)th row polynomial R(n+1,q) = Sum_{k = 0..n} q^k*R(k,x)*R(n-k,q), with R(0,q) = 1.
1/A(q*x,q) is the generating function for the triangle A047998. (End)
Conjecture: b(n) = P(n, n) where b(n) is an integer sequence with g.f. B(x) = 1/(1 - f(0)*x/(1 - f(1)*x/(1 - f(2)*x/(1 - f(3)*x/(1 - f(4)*x/(1 -...)))))), P(n, k) = P(n-1, k) + f(n-k)*P(n, k-1) for 0 < k <= n with P(n, k) = 0 for k > n, P(n, 0) = 1 for n >= 0 and where f(n) is an arbitrary function. In fact for this sequence we have f(n) = q^n. - Mikhail Kurkov, Sep 26 2024
Comments