cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A227550 A triangle formed like Pascal's triangle, but with factorial(n) on the borders instead of 1.

Original entry on oeis.org

1, 1, 1, 2, 2, 2, 6, 4, 4, 6, 24, 10, 8, 10, 24, 120, 34, 18, 18, 34, 120, 720, 154, 52, 36, 52, 154, 720, 5040, 874, 206, 88, 88, 206, 874, 5040, 40320, 5914, 1080, 294, 176, 294, 1080, 5914, 40320, 362880, 46234, 6994, 1374, 470, 470, 1374, 6994, 46234, 362880, 3628800
Offset: 0

Views

Author

Vincenzo Librandi, Aug 04 2013

Keywords

Comments

A003422 gives the second column (after 0).

Examples

			Triangle begins:
       1;
       1,     1;
       2,     2,    2;
       6,     4,    4,    6;
      24,    10,    8,   10,  24;
     120,    34,   18,   18,  34, 120;
     720,   154,   52,   36,  52, 154,  720;
    5040,   874,  206,   88,  88, 206,  874, 5040;
   40320,  5914, 1080,  294, 176, 294, 1080, 5914, 40320;
  362880, 46234, 6994, 1374, 470, 470, 1374, 6994, 46234, 362880;
		

Crossrefs

Cf. similar triangles with t on the borders: A007318 (t = 1), A028326 (t = 2), A051599 (t = prime(n)), A051601 (t = n), A051666 (t = n^2), A108617 (t = fibonacci(n)), A134636 (t = 2n+1), A137688 (t = 2^n), A227075 (t = 3^n).
Cf. A003422.
Cf. A227791 (central terms), A001563, A074911.

Programs

  • Haskell
    a227550 n k = a227550_tabl !! n !! k
    a227550_row n = a227550_tabl !! n
    a227550_tabl = map fst $ iterate
       (\(vs, w:ws) -> (zipWith (+) ([w] ++ vs) (vs ++ [w]), ws))
       ([1], a001563_list)
    -- Reinhard Zumkeller, Aug 05 2013
    
  • Magma
    function T(n,k)
      if k eq 0 or k eq n then return Factorial(n);
      else return T(n-1,k-1) + T(n-1,k);
      end if; return T;
    end function;
    [T(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, May 02 2021
    
  • Mathematica
    t = {}; Do[r = {}; Do[If[k == 0||k == n, m = n!, m = t[[n, k]] + t[[n, k + 1]]]; r = AppendTo[r, m], {k, 0, n}]; AppendTo[t, r], {n, 0, 10}]; t = Flatten[t]
  • Sage
    def T(n,k): return factorial(n) if (k==0 or k==n) else T(n-1, k-1) + T(n-1, k)
    flatten([[T(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, May 02 2021

Formula

From G. C. Greubel, May 02 2021: (Start)
T(n, k) = T(n-1, k-1) + T(n-1, k) with T(n, 0) = T(n, n) = n!.
Sum_{k=0..n} T(n, k) = 2^n * (1 +Sum_{j=1..n-1} j*j!/2^j) = A140710(n). (End)