A227550 A triangle formed like Pascal's triangle, but with factorial(n) on the borders instead of 1.
1, 1, 1, 2, 2, 2, 6, 4, 4, 6, 24, 10, 8, 10, 24, 120, 34, 18, 18, 34, 120, 720, 154, 52, 36, 52, 154, 720, 5040, 874, 206, 88, 88, 206, 874, 5040, 40320, 5914, 1080, 294, 176, 294, 1080, 5914, 40320, 362880, 46234, 6994, 1374, 470, 470, 1374, 6994, 46234, 362880, 3628800
Offset: 0
Examples
Triangle begins: 1; 1, 1; 2, 2, 2; 6, 4, 4, 6; 24, 10, 8, 10, 24; 120, 34, 18, 18, 34, 120; 720, 154, 52, 36, 52, 154, 720; 5040, 874, 206, 88, 88, 206, 874, 5040; 40320, 5914, 1080, 294, 176, 294, 1080, 5914, 40320; 362880, 46234, 6994, 1374, 470, 470, 1374, 6994, 46234, 362880;
Links
- Vincenzo Librandi, Rows n = 0..70, flattened
Crossrefs
Programs
-
Haskell
a227550 n k = a227550_tabl !! n !! k a227550_row n = a227550_tabl !! n a227550_tabl = map fst $ iterate (\(vs, w:ws) -> (zipWith (+) ([w] ++ vs) (vs ++ [w]), ws)) ([1], a001563_list) -- Reinhard Zumkeller, Aug 05 2013
-
Magma
function T(n,k) if k eq 0 or k eq n then return Factorial(n); else return T(n-1,k-1) + T(n-1,k); end if; return T; end function; [T(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, May 02 2021
-
Mathematica
t = {}; Do[r = {}; Do[If[k == 0||k == n, m = n!, m = t[[n, k]] + t[[n, k + 1]]]; r = AppendTo[r, m], {k, 0, n}]; AppendTo[t, r], {n, 0, 10}]; t = Flatten[t]
-
Sage
def T(n,k): return factorial(n) if (k==0 or k==n) else T(n-1, k-1) + T(n-1, k) flatten([[T(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, May 02 2021
Formula
From G. C. Greubel, May 02 2021: (Start)
T(n, k) = T(n-1, k-1) + T(n-1, k) with T(n, 0) = T(n, n) = n!.
Sum_{k=0..n} T(n, k) = 2^n * (1 +Sum_{j=1..n-1} j*j!/2^j) = A140710(n). (End)
Comments