A227553 Number of solutions to x^2 - y^2 - z^2 == 1 (mod n).
1, 4, 6, 8, 30, 24, 42, 32, 54, 120, 110, 48, 182, 168, 180, 128, 306, 216, 342, 240, 252, 440, 506, 192, 750, 728, 486, 336, 870, 720, 930, 512, 660, 1224, 1260, 432, 1406, 1368, 1092, 960, 1722, 1008, 1806, 880, 1620, 2024, 2162, 768, 2058, 3000, 1836
Offset: 1
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..2500
- L. Toth, Counting Solutions of Quadratic Congruences in Several Variables Revisited, J. Int. Seq. 17 (2014) # 14.11.6.
Programs
-
Mathematica
a[1] = 1; a[n_] := Sum[If[Mod[a^2-b^2-c^2, n] == 1, 1, 0], {a, n}, {b, n}, {c, n}]; Table[a[n], {n, 10}]
-
PARI
M(n,f)={sum(i=0, n-1, Mod(x^(f(i)%n), x^n-1))} a(n)={polcoeff(lift(M(n, i->i^2) * M(n, i->-(i^2))^2 ), 1%n)} \\ Andrew Howroyd, Jun 24 2018
Comments