cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A104794 Expansion of theta_4(q)^2 in powers of q.

Original entry on oeis.org

1, -4, 4, 0, 4, -8, 0, 0, 4, -4, 8, 0, 0, -8, 0, 0, 4, -8, 4, 0, 8, 0, 0, 0, 0, -12, 8, 0, 0, -8, 0, 0, 4, 0, 8, 0, 4, -8, 0, 0, 8, -8, 0, 0, 0, -8, 0, 0, 0, -4, 12, 0, 8, -8, 0, 0, 0, 0, 8, 0, 0, -8, 0, 0, 4, -16, 0, 0, 8, 0, 0, 0, 4, -8, 8, 0, 0, 0, 0, 0, 8
Offset: 0

Views

Author

Michael Somos, Mar 26 2005

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Quadratic AGM theta functions: a(q) (see A004018), b(q) (A104794), c(q) (A005883).
In the Arithmetic-Geometric Mean, if a = theta_3(q)^2, b = theta_4(q)^2 then a' := (a+b)/2 = theta_3(q^2)^2, b' := sqrt(a*b) = theta_4(q^2)^2.

Examples

			G.f. = 1 - 4*q + 4*q^2 + 4*q^4 - 8*q^5 + 4*q^8 - 4*q^9 + 8*q^10 - 8*q^13 + ...
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 576.
  • J. M. Borwein and P. B. Borwein, Pi and the AGM, Wiley, 1987.

Crossrefs

Programs

  • Julia
    # JacobiTheta4 is defined in A002448.
    A104794List(len) = JacobiTheta4(len, 2)
    A104794List(102) |> println # Peter Luschny, Mar 12 2018
  • Magma
    A := Basis( ModularForms( Gamma1(8), 1), 100); A[1] - 4*A[2] + 4*A[3]; /* Michael Somos, Jan 31 2015 */
    
  • Mathematica
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 4, 0, q]^2, {q, 0, n}];
    a[ n_] := With[ {m = InverseEllipticNomeQ @ q}, SeriesCoefficient[ Sqrt[1 - m] EllipticK[m] / (Pi/2), {q, 0, n}]];
    a[ n_] := With[ {m = InverseEllipticNomeQ @ q}, SeriesCoefficient[ (1 - m)^(1/4) EllipticK[m] / (Pi/2), {q, 0, 2 n}]];
    a[ n_] := With[ {m = InverseEllipticNomeQ @ -q}, SeriesCoefficient[ EllipticK[ m] / (Pi/2), {q, 0, n}]]; (* Michael Somos, Jun 06 2015 *)
    a[ n_] := If[ n < 1, Boole[n == 0], (-1)^n 4 DivisorSum[ n, KroneckerSymbol[ -4, #] &]]; (* Michael Somos, Jun 06 2015 *)
  • PARI
    {a(n) = if( n<1, n==0, (-1)^n * 4 * sumdiv(n, d, (d%4==1) - (d%4==3)))};
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A)^4 / eta(x^2 + A)^2, n ))};
    
  • PARI
    {a(n) = if( n<0, 0, polcoeff( 1 + 4 * sum( k=1, n, (-x)^k / (1 + x^(2*k)), x * O(x^n)), n))};
    

Formula

Expansion of phi(-q)^2 = 2 * phi(q^2)^2 - phi(q)^2 = (phi(q) - 2*phi(q^4))^2 = f(-q)^3 / psi(q) = phi(-q^2)^4 / phi(q)^2 = psi(-q)^4 / psi(q^2)^2 = psi(q)^2 * chi(-q)^6 in powers of q where phi(), psi(), chi(), f() are Ramanujan theta functions.
Expansion of (1-k^2)^(1/2) K(k^2) / (Pi/2) in powers of q where q is Jacobi's nome, k is the elliptic modulus and K() is the complete elliptic integral of the first kind.
Expansion of K(k^2) / (Pi/2) in powers of -q where q is Jacobi's nome, k is the elliptic modulus and K() is the complete elliptic integral of the first kind. - Michael Somos, Jun 08 2015
Expansion of eta(q)^4 / eta(q^2)^2 in powers of q.
Euler transform of period 2 sequence [ -4, -2, ...].
G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^4)) where f(u, v, w) = v * (u^2 + v^2) - 2*u*w^2.
G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^3), A(x^6)) where f(u1, u2, u3, u6) = u1^2 - 2*u1*u3 + 4*u2*u6 - 3*u3^2.
Moebius transform is period 8 sequence [ -4, 8, 4, 0, -4, -8, 4, 0, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (8 t)) = 16 (t/i) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A008441.
G.f.: theta_4(q)^2 = (Sum_{k in Z} (-q)^(k^2))^2 = (Product_{k>0} (1 - q^(2*k)) * (1 - q^(2*k - 1))^2)^2.
G.f.: 1 + 4 * Sum_{k>0} (-x)^k / (1 + x^(2*k)). - Michael Somos, Jun 08 2015
a(4*n + 3) = 0. a(n) = (-1)^n * A004018(n) = a(2*n). a(4*n + 1) = -4 * A008441(n). a(n) = -4 * A113652(n) unless n=0. a(6*n + 2) = 4 * A122865(n). a(6*n + 4) = 4 * A122856(n). a(8*n + 1) = -4 * A113407(n). a(8*n + 5) = -8 * A053692(n).
a(n) = a(9*n) = A204531(8*n) = A246950(8*n) = A256014(9*n) = A258210(n). - Michael Somos, Jun 08 2015
Convolution inverse of A001934. Convolution with A000729 is A227695. - Michael Somos, Jun 08 2015
G.f.: 2 * Sum_{k in Z} (-1)^k * x^(k*(k + 1)/2) / (1 + x^k). - Michael Somos, Nov 05 2015
a(0) = 1, a(n) = -(4/n)*Sum_{k=1..n} A002131(k)*a(n-k) for n > 0. - Seiichi Manyama, May 02 2017
G.f.: exp(2*Sum_{k>=1} (sigma(k) - sigma(2*k))*x^k/k). - Ilya Gutkovskiy, Sep 19 2018

A227317 Expansion of psi(x)^6 * phi(-x)^2 in powers of x where phi(), psi() are Ramanujan theta functions.

Original entry on oeis.org

1, 2, -5, -10, 5, 6, 10, 40, -20, -50, 19, -52, -30, 50, -25, 74, 97, 50, -25, -140, 69, -34, -100, -50, -185, -6, 83, 310, -60, -60, 410, -128, 145, -100, -245, 250, -87, -90, -400, -410, -151, 362, 185, -50, 285, 30, 150, -240, 500, 370, -68, 222, 5, -190
Offset: 0

Views

Author

Michael Somos, Sep 02 2013

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			1 + 2*x - 5*x^2 - 10*x^3 + 5*x^4 + 6*x^5 + 10*x^6 + 40*x^7 - 20*x^8 + ...
q^3 + 2*q^7 - 5*q^11 - 10*q^15 + 5*q^19 + 6*q^23 + 10*q^27 + 40*q^31 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ (QPochhammer[ q^2]^5 / QPochhammer[ q])^2, {q, 0, n}]
  • PARI
    {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x^2 + A)^5 / eta(x + A))^2, n))}

Formula

Expansion of psi(x)^5 * f(-x)^3 = psi(x)^2 * f(-x^2)^6 in powers of x where psi(), f() are Ramanujan theta functions.
Expansion of q^(-3/4) * (eta(q^2)^5 / eta(x))^2 in powers of q.
Euler transform of period 2 sequence [ 2, -8, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (32 t)) = 128 (t / i)^4 g(t) where q = exp(2 Pi i t) and g() is the g.f. for A227695.
G.f.: (Product_{k>0} (1 - x^(2*k))^5 / (1 - x^k))^2.
Convolution of A008439 and A010816.
-8 * a(n) = A215600(2*n + 1).

A228072 Expansion of psi(x^2)^2 * phi(-x^2)^6 + 8 * x * psi(x^2)^6 * phi(-x^2)^2 in powers of x where phi(), psi() are Ramanujan theta functions.

Original entry on oeis.org

1, 8, -10, 16, 37, -40, -50, -80, -30, 40, 128, 48, -25, 80, -34, 320, -320, -160, 310, -400, 410, 152, -370, -416, -87, -240, -410, 400, 320, -200, 30, 592, 500, 776, 384, 400, -630, -200, -640, -1120, -359, 552, 300, -272, -326, -800, 2560, -400, -110
Offset: 0

Views

Author

Michael Somos, Sep 02 2013

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 + 8*x - 10*x^2 + 16*x^3 + 37*x^4 - 40*x^5 - 50*x^6 - 80*x^7 - 30*x^8 + ...
G.f. = q + 8*q^3 - 10*q^5 + 16*q^7 + 37*q^9 - 40*q^11 - 50*q^13 - 80*q^15 - 30*q^17 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ (QPochhammer[ x^2]^12 + 8 x QPochhammer[ x^4]^12) / (QPochhammer[ x^2] QPochhammer[ x^4])^2, {x, 0, n}];
  • PARI
    {a(n) = local(A); if( n<0, 0, A = x * O(x^n);polcoeff( (eta(x^2 + A)^5 / eta(x^4 + A))^2 + 8 * x * (eta(x^4 + A)^5 / eta(x^2 + A))^2, n))};

Formula

Expansion of q^(-1/2) * ((eta(q^2)^5 / eta(q^4))^2 + 8 * (eta(q^4)^5 / eta(q^2))^2) in powers of q.
Expansion of q^(-1/2) * (eta(q^2)^12 + 8 * eta(q^4)^12) / ( eta(q^2) * eta(q^4) )^2 in powers of q.
a(n) = b(2*n + 1) where b(n) is multiplicative with b(2^e) = 0^e, b(p^e) = b(p) * b(p^(e-1)) - p^3 * b(p^(e-2)) if p>2.
G.f. is a period 1 Fourier series which satisfies f(-1 / (8 t)) = 8^2 (t / i)^4 f(t) where q = exp(2 Pi i t).
a(2*n) = A227695(n). a(2*n + 1) = 8 * A227317(n).
If F(x) is the g.f. for A002171, then A(x) * F(x^2) = B(x) the g.f. for A227239. - Michael Somos, Jan 08 2015
Showing 1-3 of 3 results.