A227887 O.g.f.: 1/(1 - x/(1 - 2^4*x/(1 - 3^4*x/(1 - 4^4*x/(1 - 5^4*x/(1 - 6^4*x/(1 -...))))))), a continued fraction.
1, 1, 17, 1585, 485729, 372281761, 601378506737, 1820943071778385, 9489456505643743169, 79759396929125826861121, 1027412704023984825792488657, 19464301715272748317827942755185, 524230105465412991467916306841439009, 19509134827116013764271741468197795034081
Offset: 0
Keywords
Examples
G.f.: A(x) = 1 + x + 17*x^2 + 1585*x^3 + 485729*x^4 + 372281761*x^5 +...
Programs
-
Maple
T := proc(n, k) option remember; if k = 0 then 1 else if k = n then T(n, k-1) else (k - n - 1)^4 * T(n, k - 1) + T(n - 1, k) fi fi end: a := n -> T(n, n): seq(a(n), n = 0..13); # Peter Luschny, Oct 02 2023
-
Mathematica
nmax = 20; CoefficientList[Series[1/Fold[(1 - #2/#1) &, 1, Reverse[Range[nmax + 1]^4*x]], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 25 2017 *)
-
PARI
{a(n)=local(CF=1+x*O(x^n)); for(k=1, n, CF=1/(1-(n-k+1)^4*x*CF)); polcoeff(CF, n)} for(n=0, 20, print1(a(n), ", "))
Formula
a(n) ~ c * d^n * (n!)^4 / sqrt(n), where d = 4096 * Pi^2 / Gamma(1/4)^8 = 1.353976395034780345656335026823167975194... and c = sqrt(2*d/Pi) = 64 * sqrt(2*Pi) / Gamma(1/4)^4 = 0.9284223954634658948993105287957575... - Vaclav Kotesovec, Aug 25 2017, updated Sep 23 2020
Comments