A216966
O.g.f.: 1/(1 - x/(1 - 2^3*x/(1 - 3^3*x/(1 - 4^3*x/(1 - 5^3*x/(1 - 6^3*x/(1 -...))))))), a continued fraction.
Original entry on oeis.org
1, 1, 9, 297, 24273, 3976209, 1145032281, 530050022073, 369626762653857, 369614778179835681, 509880429246329788329, 940535818601273787325257, 2261104378216803649437779313, 6933711495845384616312688513329, 26630255658298074277771723491847161
Offset: 0
G.f.: A(x) = 1 + x + 9*x^2 + 297*x^3 + 24273*x^4 + 3976209*x^5 +...
-
T := proc(n, k) option remember; if k = 0 then 1 else if k = n then T(n, k-1)
else -(k - n - 1)^3 * T(n, k - 1) + T(n - 1, k) fi fi end:
a := n -> T(n, n): seq(a(n), n = 0..14); # Peter Luschny, Oct 02 2023
-
nmax = 20; CoefficientList[Series[1/Fold[(1 - #2/#1) &, 1, Reverse[Range[nmax + 1]^3*x]], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 25 2017 *)
-
{a(n)=local(CF=1+x*O(x^n)); for(k=1, n, CF=1/(1-(n-k+1)^3*x*CF)); polcoeff(CF,n)}
for(n=0,20,print1(a(n),", "))
A290569
Square array A(n,k), n>=0, k>=0, read by antidiagonals, where column k is the expansion of continued fraction 1/(1 - x/(1 - 2^k*x/(1 - 3^k*x/(1 - 4^k*x/(1 - 5^k*x/(1 - ...)))))).
Original entry on oeis.org
1, 1, 1, 1, 1, 2, 1, 1, 3, 5, 1, 1, 5, 15, 14, 1, 1, 9, 61, 105, 42, 1, 1, 17, 297, 1385, 945, 132, 1, 1, 33, 1585, 24273, 50521, 10395, 429, 1, 1, 65, 8865, 485729, 3976209, 2702765, 135135, 1430, 1, 1, 129, 50881, 10401345, 372281761, 1145032281, 199360981, 2027025, 4862
Offset: 0
G.f. of column k: A_k(x) = 1 + x + (2^k + 1)*x^2 + (2^(k+1) + 4^k + 6^k + 1)*x^3 + ...
Square array begins:
: 1, 1, 1, 1, 1, 1, ...
: 1, 1, 1, 1, 1, 1, ...
: 2, 3, 5, 9, 17, 33, ...
: 5, 15, 61, 297, 1585, 8865, ...
: 14, 105, 1385, 24273, 485729, 10401345, ...
: 42, 945, 50521, 3976209, 372281761, 38103228225, ...
-
Table[Function[k, SeriesCoefficient[1/(1 + ContinuedFractionK[-i^k x, 1, {i, 1, n}]), {x, 0, n}]][j - n], {j, 0, 9}, {n, 0, j}] // Flatten
A337807
O.g.f.: 1/(1 - x/(1 - 2^5*x/(1 - 3^5*x/(1 - 4^5*x/(1 - 5^5*x/(1 - 6^5*x/(1 -...))))))), a continued fraction.
Original entry on oeis.org
1, 1, 33, 8865, 10401345, 38103228225, 352780110115425, 7139708074971014625, 284135772494258636522625, 20513418606891012201924650625, 2521576999908767233729260158270625, 501403316300941434382591838239147790625, 154613553816538472779474765739707728587090625
Offset: 0
-
nmax = 15; CoefficientList[Series[1/Fold[(1 - #2/#1) &, 1, Reverse[Range[nmax + 1]^5*x]], {x, 0, nmax}], x]
A337808
O.g.f.: 1/(1 - x/(1 - 2^6*x/(1 - 3^6*x/(1 - 4^6*x/(1 - 5^6*x/(1 - 6^6*x/(1 -...))))))), a continued fraction.
Original entry on oeis.org
1, 1, 65, 50881, 231455105, 4104215813761, 220579355255364545, 30221200809380332664641, 9302731197994837387680880385, 5843241203886533657008940262539521, 6942621504765123845961888310824174754625, 14676663615276526648053662674115841827580734401
Offset: 0
-
nmax = 15; CoefficientList[Series[1/Fold[(1 - #2/#1) &, 1, Reverse[Range[nmax + 1]^6*x]], {x, 0, nmax}], x]
A337809
O.g.f.: 1/(1 - x/(1 - 2^7*x/(1 - 3^7*x/(1 - 4^7*x/(1 - 5^7*x/(1 - 6^7*x/(1 -...))))))), a continued fraction.
Original entry on oeis.org
1, 1, 129, 296577, 5273061633, 456296857756929, 143521873041157216641, 134210828762693919568092033, 322179101908965036802512977670657, 1775143826590061506939568896182460951041, 20554318541749460884980441781629250054049026689
Offset: 0
-
nmax = 15; CoefficientList[Series[1/Fold[(1 - #2/#1) &, 1, Reverse[Range[nmax + 1]^7*x]], {x, 0, nmax}], x]
A338634
G.f. A(x) satisfies: 1 = A(x) - x/(A(x) - 2^4*x/(A(x) - 3^4*x/(A(x) - 4^4*x/(A(x) - 5^4*x/(A(x) - 6^4*x/(A(x) - ... )))))), a continued fraction relation.
Original entry on oeis.org
1, 1, 15, 1490, 472475, 367254494, 596838469302, 1812465211795364, 9460229930323620755, 79588323526110945959270, 1025816228173896271039326050, 19441688693651416990291991566332, 523762848713992063145153491388390686, 19495503038639783268900576813041922912172
Offset: 0
G.f.: A(x) = 1 + x + 15*x^2 + 1490*x^3 + 472475*x^4 + 367254494*x^5 + 596838469302*x^6 + 1812465211795364*x^7 + 9460229930323620755*x^8 + ...
where
1 = A(x) - x/(A(x) - 2^4*x/(A(x) - 3^4*x/(A(x) - 4^4*x/(A(x) - 5^4*x/(A(x) - 6^4*x/(A(x) - 7^4*x/(A(x) - 8^4*x/(A(x) - 9^4*x/(A(x) - 10^4*x/(A(x) - ... )))))))))), a continued fraction relation.
-
{a(n) = my(A=[1],CF=1); for(i=1,n, A=concat(A,0); for(i=1,#A, CF = Ser(A) - (#A-i+1)^4*x/CF ); A[#A] = -polcoeff(CF,#A-1) );A[n+1] }
for(n=0,20,print1(a(n),", "))
A372001
Array read by descending antidiagonals: A family of generalized Catalan numbers generated by a generalization of Deléham's Delta operator.
Original entry on oeis.org
1, 1, 1, 2, 1, 1, 5, 3, 1, 1, 14, 15, 5, 1, 1, 42, 105, 61, 9, 1, 1, 132, 945, 1385, 297, 17, 1, 1, 429, 10395, 50521, 24273, 1585, 33, 1, 1, 1430, 135135, 2702765, 3976209, 485729, 8865, 65, 1, 1, 4862, 2027025, 199360981, 1145032281, 372281761, 10401345, 50881, 129, 1, 1
Offset: 1
Array starts:
[0] 1, 1, 2, 5, 14, 42, 132, ...
[1] 1, 1, 3, 15, 105, 945, 10395, ...
[2] 1, 1, 5, 61, 1385, 50521, 2702765, ...
[3] 1, 1, 9, 297, 24273, 3976209, 1145032281, ...
[4] 1, 1, 17, 1585, 485729, 372281761, 601378506737, ...
[5] 1, 1, 33, 8865, 10401345, 38103228225, 352780110115425, ...
[6] 1, 1, 65, 50881, 231455105, 4104215813761, 220579355255364545, ...
.
Seen as a triangle T(n, k) = A(k, n - k):
[0] [ 1]
[1] [ 1, 1]
[2] [ 2, 1, 1]
[3] [ 5, 3, 1, 1]
[4] [ 14, 15, 5, 1, 1]
[5] [ 42, 105, 61, 9, 1, 1]
[6] [132, 945, 1385, 297, 17, 1, 1]
[7] [429, 10395, 50521, 24273, 1585, 33, 1, 1]
By ascending antidiagonals:
A290569.
-
def GeneralizedDelehamDelta(F, dim, seq=True): # The algorithm.
ring = PolynomialRing(ZZ, 'x')
x = ring.gen()
A = [sum(F[j](k) * x^j for j in range(len(F))) for k in range(dim)]
C = [ring(0)] + [ring(1) for i in range(dim)]
for k in range(dim):
for n in range(k, 0, -1):
C[n] = C[n-1] + C[n+1] * A[n-1]
yield list(C[1])[-1] if seq else list(C[1])
def F(n): # Define the input functions.
def p0(): return lambda n: pow(n, n^0)
def p(k): return lambda n: pow(n + 1, k)
return [p0()] + [p(k) for k in range(n + 1)]
def A(n, dim): # Return only the main diagonal of the triangle.
return [r for r in GeneralizedDelehamDelta(F(n), dim)]
for n in range(7): print(A(n, 7))
def T(n, dim): # Return the regularized triangle.
R = GeneralizedDelehamDelta(F(n), dim, False)
return [[r[k] for k in range(0, len(r), n + 1)] for r in R]
for n in range(0, 4):
for row in T(n, 6): print(row)
A371997
Triangle read by rows: T(m, n, k) = 1 if k = 0 and T(m, n, k - 1) if k = n; otherwise (-1)^m*(k - n - 1)^m * T(m, n, k - 1) + T(m, n - 1, k) where m = 4.
Original entry on oeis.org
1, 1, 1, 1, 17, 17, 1, 98, 1585, 1585, 1, 354, 30259, 485729, 485729, 1, 979, 280883, 23237252, 372281761, 372281761, 1, 2275, 1702758, 459143300, 37562889061, 601378506737, 601378506737, 1, 4676, 7762854, 5310927050, 1397160213861, 113771355829478, 1820943071778385, 1820943071778385
Offset: 0
Triangle begins:
[0] 1;
[1] 1, 1;
[2] 1, 17, 17;
[3] 1, 98, 1585, 1585;
[4] 1, 354, 30259, 485729, 485729;
[5] 1, 979, 280883, 23237252, 372281761, 372281761;
[6] 1, 2275, 1702758, 459143300, 37562889061, 601378506737, 601378506737;
-
T := proc(m, n, k) option remember; if k = 0 then 1 elif k = n then T(m, n, k-1) else (-1)^m*(k - n - 1)^m * T(m, n, k - 1) + T(m, n - 1, k) fi end:
seq(seq(T(4, n, k), k = 0..n), n = 0..8));
Showing 1-8 of 8 results.
Comments