A227887
O.g.f.: 1/(1 - x/(1 - 2^4*x/(1 - 3^4*x/(1 - 4^4*x/(1 - 5^4*x/(1 - 6^4*x/(1 -...))))))), a continued fraction.
Original entry on oeis.org
1, 1, 17, 1585, 485729, 372281761, 601378506737, 1820943071778385, 9489456505643743169, 79759396929125826861121, 1027412704023984825792488657, 19464301715272748317827942755185, 524230105465412991467916306841439009, 19509134827116013764271741468197795034081
Offset: 0
G.f.: A(x) = 1 + x + 17*x^2 + 1585*x^3 + 485729*x^4 + 372281761*x^5 +...
-
T := proc(n, k) option remember; if k = 0 then 1 else if k = n then T(n, k-1)
else (k - n - 1)^4 * T(n, k - 1) + T(n - 1, k) fi fi end:
a := n -> T(n, n): seq(a(n), n = 0..13); # Peter Luschny, Oct 02 2023
-
nmax = 20; CoefficientList[Series[1/Fold[(1 - #2/#1) &, 1, Reverse[Range[nmax + 1]^4*x]], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 25 2017 *)
-
{a(n)=local(CF=1+x*O(x^n)); for(k=1, n, CF=1/(1-(n-k+1)^4*x*CF)); polcoeff(CF, n)}
for(n=0, 20, print1(a(n), ", "))
A343439
G.f.: 1 + 2^0*x/(1 + 2^1*x/(1 + 2^2*x/(1 + 2^3*x/(1 + 2^4*x/(1 + ...))))).
Original entry on oeis.org
1, 1, -2, 12, -136, 2736, -99616, 6810816, -900563072, 234247256832, -120883821425152, 124271556482829312, -255006726559759042560, 1045529090595650037657600, -8569159507007490469146992640, 140431398588497630920722150113280, -4602217897540461023955069241211781120
Offset: 0
-
a(n) = my(A=1+O(x)); for(i=1, n, A=1+2^(n-i)*x/A); polcoef(A, n);
-
a(n) = if(n<2, 1, -sum(k=1, n-1, 2^k*a(k)*a(n-k)));
A290569
Square array A(n,k), n>=0, k>=0, read by antidiagonals, where column k is the expansion of continued fraction 1/(1 - x/(1 - 2^k*x/(1 - 3^k*x/(1 - 4^k*x/(1 - 5^k*x/(1 - ...)))))).
Original entry on oeis.org
1, 1, 1, 1, 1, 2, 1, 1, 3, 5, 1, 1, 5, 15, 14, 1, 1, 9, 61, 105, 42, 1, 1, 17, 297, 1385, 945, 132, 1, 1, 33, 1585, 24273, 50521, 10395, 429, 1, 1, 65, 8865, 485729, 3976209, 2702765, 135135, 1430, 1, 1, 129, 50881, 10401345, 372281761, 1145032281, 199360981, 2027025, 4862
Offset: 0
G.f. of column k: A_k(x) = 1 + x + (2^k + 1)*x^2 + (2^(k+1) + 4^k + 6^k + 1)*x^3 + ...
Square array begins:
: 1, 1, 1, 1, 1, 1, ...
: 1, 1, 1, 1, 1, 1, ...
: 2, 3, 5, 9, 17, 33, ...
: 5, 15, 61, 297, 1585, 8865, ...
: 14, 105, 1385, 24273, 485729, 10401345, ...
: 42, 945, 50521, 3976209, 372281761, 38103228225, ...
-
Table[Function[k, SeriesCoefficient[1/(1 + ContinuedFractionK[-i^k x, 1, {i, 1, n}]), {x, 0, n}]][j - n], {j, 0, 9}, {n, 0, j}] // Flatten
A337807
O.g.f.: 1/(1 - x/(1 - 2^5*x/(1 - 3^5*x/(1 - 4^5*x/(1 - 5^5*x/(1 - 6^5*x/(1 -...))))))), a continued fraction.
Original entry on oeis.org
1, 1, 33, 8865, 10401345, 38103228225, 352780110115425, 7139708074971014625, 284135772494258636522625, 20513418606891012201924650625, 2521576999908767233729260158270625, 501403316300941434382591838239147790625, 154613553816538472779474765739707728587090625
Offset: 0
-
nmax = 15; CoefficientList[Series[1/Fold[(1 - #2/#1) &, 1, Reverse[Range[nmax + 1]^5*x]], {x, 0, nmax}], x]
A337808
O.g.f.: 1/(1 - x/(1 - 2^6*x/(1 - 3^6*x/(1 - 4^6*x/(1 - 5^6*x/(1 - 6^6*x/(1 -...))))))), a continued fraction.
Original entry on oeis.org
1, 1, 65, 50881, 231455105, 4104215813761, 220579355255364545, 30221200809380332664641, 9302731197994837387680880385, 5843241203886533657008940262539521, 6942621504765123845961888310824174754625, 14676663615276526648053662674115841827580734401
Offset: 0
-
nmax = 15; CoefficientList[Series[1/Fold[(1 - #2/#1) &, 1, Reverse[Range[nmax + 1]^6*x]], {x, 0, nmax}], x]
A337809
O.g.f.: 1/(1 - x/(1 - 2^7*x/(1 - 3^7*x/(1 - 4^7*x/(1 - 5^7*x/(1 - 6^7*x/(1 -...))))))), a continued fraction.
Original entry on oeis.org
1, 1, 129, 296577, 5273061633, 456296857756929, 143521873041157216641, 134210828762693919568092033, 322179101908965036802512977670657, 1775143826590061506939568896182460951041, 20554318541749460884980441781629250054049026689
Offset: 0
-
nmax = 15; CoefficientList[Series[1/Fold[(1 - #2/#1) &, 1, Reverse[Range[nmax + 1]^7*x]], {x, 0, nmax}], x]
A338633
G.f. A(x) satisfies: 1 = A(x) - x/(A(x) - 2^3*x/(A(x) - 3^3*x/(A(x) - 4^3*x/(A(x) - 5^3*x/(A(x) - 6^3*x/(A(x) - ...)))))), a continued fraction relation.
Original entry on oeis.org
1, 1, 7, 250, 21867, 3725702, 1096355494, 513875333940, 361121449989171, 362961084011245198, 502496711191618404882, 929337000359116522329132, 2238572532534241145084855934, 6875030222633195280825967544508, 26436454884630260855874989243890732
Offset: 0
G.f.: A(x) = 1 + x + 7*x^2 + 250*x^3 + 21867*x^4 + 3725702*x^5 + 1096355494*x^6 + 513875333940*x^7 + 361121449989171*x^8 + 362961084011245198*x^9 + ...
where
1 = A(x) - x/(A(x) - 2^3*x/(A(x) - 3^3*x/(A(x) - 4^3*x/(A(x) - 5^3*x/(A(x) - 6^3*x/(A(x) - 7^3*x/(A(x) - 8^3*x/(A(x) - 9^3*x/(A(x) - ...))))))))), a continued fraction relation.
-
{a(n) = my(A=[1],CF=1); for(i=1,n, A=concat(A,0); for(i=1,#A, CF = Ser(A) - (#A-i+1)^3*x/CF ); A[#A] = -polcoeff(CF,#A-1) );A[n+1] }
for(n=0,20,print1(a(n),", "))
A372001
Array read by descending antidiagonals: A family of generalized Catalan numbers generated by a generalization of Deléham's Delta operator.
Original entry on oeis.org
1, 1, 1, 2, 1, 1, 5, 3, 1, 1, 14, 15, 5, 1, 1, 42, 105, 61, 9, 1, 1, 132, 945, 1385, 297, 17, 1, 1, 429, 10395, 50521, 24273, 1585, 33, 1, 1, 1430, 135135, 2702765, 3976209, 485729, 8865, 65, 1, 1, 4862, 2027025, 199360981, 1145032281, 372281761, 10401345, 50881, 129, 1, 1
Offset: 1
Array starts:
[0] 1, 1, 2, 5, 14, 42, 132, ...
[1] 1, 1, 3, 15, 105, 945, 10395, ...
[2] 1, 1, 5, 61, 1385, 50521, 2702765, ...
[3] 1, 1, 9, 297, 24273, 3976209, 1145032281, ...
[4] 1, 1, 17, 1585, 485729, 372281761, 601378506737, ...
[5] 1, 1, 33, 8865, 10401345, 38103228225, 352780110115425, ...
[6] 1, 1, 65, 50881, 231455105, 4104215813761, 220579355255364545, ...
.
Seen as a triangle T(n, k) = A(k, n - k):
[0] [ 1]
[1] [ 1, 1]
[2] [ 2, 1, 1]
[3] [ 5, 3, 1, 1]
[4] [ 14, 15, 5, 1, 1]
[5] [ 42, 105, 61, 9, 1, 1]
[6] [132, 945, 1385, 297, 17, 1, 1]
[7] [429, 10395, 50521, 24273, 1585, 33, 1, 1]
By ascending antidiagonals:
A290569.
-
def GeneralizedDelehamDelta(F, dim, seq=True): # The algorithm.
ring = PolynomialRing(ZZ, 'x')
x = ring.gen()
A = [sum(F[j](k) * x^j for j in range(len(F))) for k in range(dim)]
C = [ring(0)] + [ring(1) for i in range(dim)]
for k in range(dim):
for n in range(k, 0, -1):
C[n] = C[n-1] + C[n+1] * A[n-1]
yield list(C[1])[-1] if seq else list(C[1])
def F(n): # Define the input functions.
def p0(): return lambda n: pow(n, n^0)
def p(k): return lambda n: pow(n + 1, k)
return [p0()] + [p(k) for k in range(n + 1)]
def A(n, dim): # Return only the main diagonal of the triangle.
return [r for r in GeneralizedDelehamDelta(F(n), dim)]
for n in range(7): print(A(n, 7))
def T(n, dim): # Return the regularized triangle.
R = GeneralizedDelehamDelta(F(n), dim, False)
return [[r[k] for k in range(0, len(r), n + 1)] for r in R]
for n in range(0, 4):
for row in T(n, 6): print(row)
A218221
G.f.: 1/(1-x/(1-4*x/(1-10*x/(1-20*x/(1-35*x/(1-56*x/(1-...))))))), a continued fraction.
Original entry on oeis.org
1, 1, 5, 65, 1725, 81225, 6181125, 710984625, 117537778125, 26848583825625, 8210318193703125, 3275053250628290625, 1667519951972905828125, 1063947235962694359515625, 837322677987349287566953125, 801714108831393845941434140625
Offset: 0
G.f.: A(x) = 1 + x + 5*x^2 + 65*x^3 + 1725*x^4 + 81225*x^5 +...
-
nmax = 20; CoefficientList[Series[1/Fold[(1 - #2/#1) &, 1, Reverse[Binomial[Range[nmax + 1]+2,3]*x]], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 25 2017 *)
eulerCF[f_, len_] := Module[{g}, g[len - 1] = 1;
g[k_] := g[k] = 1 - f[k]/(f[k] - 2/g[k + 1]); CoefficientList[g[0] + O[x]^len, x]];
A218221List[len_] := eulerCF[(1/3) x (# + 1) (# + 2) (# + 3) &, len];
A218221List[16] (* Peter Luschny, Aug 09 2019 *)
-
{a(n)=local(CF=1+x*O(x^n)); for(k=1, n, CF=1/(1-(n-k+1)*(n-k+2)*(n-k+3)/6*x*CF)); polcoeff(CF, n)}
for(n=0,20,print1(a(n),", "))
A371996
Triangle read by rows: T(m, n, k) = 1 if k = 0 and T(m, n, k - 1) if k = n; otherwise (-1)^m*(k - n - 1)^m * T(m, n, k - 1) + T(m, n - 1, k) where m = 3.
Original entry on oeis.org
1, 1, 1, 1, 9, 9, 1, 36, 297, 297, 1, 100, 2997, 24273, 24273, 1, 225, 17397, 493992, 3976209, 3976209, 1, 441, 72522, 5135400, 142632009, 1145032281, 1145032281, 1, 784, 241866, 35368650, 2406225609, 66113123724, 530050022073, 530050022073
Offset: 0
Triangle read by rows:
[0] 1;
[1] 1, 1;
[2] 1, 9, 9;
[3] 1, 36, 297, 297;
[4] 1, 100, 2997, 24273, 24273;
[5] 1, 225, 17397, 493992, 3976209, 3976209;
[6] 1, 441, 72522, 5135400, 142632009, 1145032281, 1145032281;
-
T := proc(m, n, k) option remember; if k = 0 then 1 elif k = n then T(m, n, k-1) else (-1)^m*(k - n - 1)^m * T(m, n, k - 1) + T(m, n - 1, k) fi end:
seq(seq(T(3, n, k), k = 0..n), n = 0..8));
Showing 1-10 of 10 results.
Comments