A291333
a(n) = [x^n] 1/(1 - x/(1 - 2^n*x/(1 - 3^n*x/(1 - 4^n*x/(1 - 5^n*x/(1 - ...)))))), a continued fraction.
Original entry on oeis.org
1, 1, 5, 297, 485729, 38103228225, 220579355255364545, 134210828762693919568092033, 11583583466188874003924403353591815169, 183988806081826466732185672966967145613350641690625, 676960735217941793634104089611911809588055950029181968418342810625
Offset: 0
-
seq(coeff(series(numtheory:-cfrac([0,[1,1],seq([-i^n*x,1],i=1..n)]),x,n+1),x,n),n=0..15); # Robert Israel, Aug 22 2017
-
Table[SeriesCoefficient[1/(1 + ContinuedFractionK[-i^n x, 1, {i, 1, n}]), {x, 0, n}], {n, 0, 10}]
A372001
Array read by descending antidiagonals: A family of generalized Catalan numbers generated by a generalization of Deléham's Delta operator.
Original entry on oeis.org
1, 1, 1, 2, 1, 1, 5, 3, 1, 1, 14, 15, 5, 1, 1, 42, 105, 61, 9, 1, 1, 132, 945, 1385, 297, 17, 1, 1, 429, 10395, 50521, 24273, 1585, 33, 1, 1, 1430, 135135, 2702765, 3976209, 485729, 8865, 65, 1, 1, 4862, 2027025, 199360981, 1145032281, 372281761, 10401345, 50881, 129, 1, 1
Offset: 1
Array starts:
[0] 1, 1, 2, 5, 14, 42, 132, ...
[1] 1, 1, 3, 15, 105, 945, 10395, ...
[2] 1, 1, 5, 61, 1385, 50521, 2702765, ...
[3] 1, 1, 9, 297, 24273, 3976209, 1145032281, ...
[4] 1, 1, 17, 1585, 485729, 372281761, 601378506737, ...
[5] 1, 1, 33, 8865, 10401345, 38103228225, 352780110115425, ...
[6] 1, 1, 65, 50881, 231455105, 4104215813761, 220579355255364545, ...
.
Seen as a triangle T(n, k) = A(k, n - k):
[0] [ 1]
[1] [ 1, 1]
[2] [ 2, 1, 1]
[3] [ 5, 3, 1, 1]
[4] [ 14, 15, 5, 1, 1]
[5] [ 42, 105, 61, 9, 1, 1]
[6] [132, 945, 1385, 297, 17, 1, 1]
[7] [429, 10395, 50521, 24273, 1585, 33, 1, 1]
By ascending antidiagonals:
A290569.
-
def GeneralizedDelehamDelta(F, dim, seq=True): # The algorithm.
ring = PolynomialRing(ZZ, 'x')
x = ring.gen()
A = [sum(F[j](k) * x^j for j in range(len(F))) for k in range(dim)]
C = [ring(0)] + [ring(1) for i in range(dim)]
for k in range(dim):
for n in range(k, 0, -1):
C[n] = C[n-1] + C[n+1] * A[n-1]
yield list(C[1])[-1] if seq else list(C[1])
def F(n): # Define the input functions.
def p0(): return lambda n: pow(n, n^0)
def p(k): return lambda n: pow(n + 1, k)
return [p0()] + [p(k) for k in range(n + 1)]
def A(n, dim): # Return only the main diagonal of the triangle.
return [r for r in GeneralizedDelehamDelta(F(n), dim)]
for n in range(7): print(A(n, 7))
def T(n, dim): # Return the regularized triangle.
R = GeneralizedDelehamDelta(F(n), dim, False)
return [[r[k] for k in range(0, len(r), n + 1)] for r in R]
for n in range(0, 4):
for row in T(n, 6): print(row)
A291260
Square array A(n,k), n>=0, k>=0, read by antidiagonals, where column k is the expansion of continued fraction 1/(1 - 2^k*x/(1 - 4^k*x/(1 - 6^k*x/(1 - 8^k*x/(1 - 10^k*x/(1 - ...)))))).
Original entry on oeis.org
1, 1, 1, 1, 2, 2, 1, 4, 12, 5, 1, 8, 80, 120, 14, 1, 16, 576, 3904, 1680, 42, 1, 32, 4352, 152064, 354560, 30240, 132, 1, 64, 33792, 6492160, 99422208, 51733504, 665280, 429, 1, 128, 266240, 290488320, 31832735744, 130292416512, 11070525440, 17297280, 1430
Offset: 0
Square array begins:
: 1, 1, 1, 1, 1, ...
: 1, 2, 4, 8, 16, ...
: 2, 12, 80, 576, 4352, ...
: 5, 120, 3904, 152064, 6492160, ...
: 14, 1680, 354560, 99422208, 31832735744, ...
: 42, 30240, 51733504, 130292416512, 390365719822336, ...
-
Table[Function[k, SeriesCoefficient[1/(1 + ContinuedFractionK[-(2 i)^k x, 1, {i, 1, n}]), {x, 0, n}]][j - n], {j, 0, 8}, {n, 0, j}] // Flatten
A291261
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of continued fraction 1/(1 - x/(1 - 3^k*x/(1 - 5^k*x/(1 - 7^k*x/(1 - 9^k*x/(1 - ...)))))).
Original entry on oeis.org
1, 1, 1, 1, 1, 2, 1, 1, 4, 5, 1, 1, 10, 31, 14, 1, 1, 28, 325, 364, 42, 1, 1, 82, 4159, 22150, 5746, 132, 1, 1, 244, 57349, 1790452, 2586250, 113944, 429, 1, 1, 730, 818911, 162045118, 1691509906, 461242900, 2719291, 1430, 1, 1, 2188, 11923525, 15520964284, 1289803048426, 2978600051368, 116651486125, 75843724, 4862
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, ...
1, 1, 1, 1, 1, 1, ...
2, 4, 10, 28, 82, 244, ...
5, 31, 325, 4159, 57349, 818911, ...
14, 364, 22150, 1790452, 162045118, 15520964284, ...
42, 5746, 2586250, 1691509906, 1289803048426, 1063421637466546, ...
-
Table[Function[k, SeriesCoefficient[1/(1 + ContinuedFractionK[-(2 i - 1)^k x, 1, {i, 1, n}]), {x, 0, n}]][j - n], {j, 0, 9}, {n, 0, j}] // Flatten
A291207
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of continued fraction 1/(1 + x/(1 - 2^k*x/(1 + 3^k*x/(1 - 4^k*x/(1 + 5^k*x/(1 - ...)))))).
Original entry on oeis.org
1, 1, -1, 1, -1, 0, 1, -1, -1, 1, 1, -1, -3, 5, 0, 1, -1, -7, 27, 17, -2, 1, -1, -15, 167, 441, -121, 0, 1, -1, -31, 1071, 10673, -11529, -721, 5, 1, -1, -63, 6815, 262305, -1337713, -442827, 6845, 0, 1, -1, -127, 42687, 6525377, -161721441, -297209047, 23444883, 58337, -14
Offset: 0
G.f. of column k: A_k(x) = 1 - x + (1 - 2^k)*x^2 + (2^(k + 1) - 4^k + 6^k - 1)*x^3 + ...
Square array begins:
1, 1, 1, 1, 1, 1, ...
-1, -1, -1, -1, -1, -1, ...
0, -1, -3, -7, -15, -31, ...
1, 5, 27, 167, 1071, 6815, ...
0, 17, 441, 10673, 262305, 6525377, ...
-2, -121, -11529, -1337713, -161721441, -19802585281, ...
-
Table[Function[k, SeriesCoefficient[1/(1 + ContinuedFractionK[-(-1)^i i^k x, 1, {i, 1, n}]), {x, 0, n}]][j - n], {j, 0, 9}, {n, 0, j}] // Flatten
Showing 1-5 of 5 results.
Comments